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ABSTRACT 

NPSAT1 is a small satellite providing education and hands-on experience to NPS 

students; it also serves as a platform for small satellite technology proof-of-concept 

demonstrations and experiments.  One of these experiments is the MEMS rate sensor 

experiment.  Comprising a triad of COTS MEMS devices, this experiment will use the 

MEMS rate sensors to measure angular rates for NPSAT1.  

The NPSAT1 MEMS 3-Axis rate sensor was originally characterized and tested 

in 2007.  Subsequently, the decision was made to fly the MEMS subsystem 

unpressurized.  This new requirement, along with the replacement of a damaged sensor, 

necessitated the recalibration of the MEMS subsystem.  

In addition, the rate compensation algorithm has been updated by determining the 

systematic errors of the subsystem—bias, thermal and pressure in-run drift, scale factor 

errors, and nonorthogonality through thermal ramp tests and rate transfer tests.  

Furthermore, other inertial sensor error sources such as hysteresis, repeatability, run-to-

run error, and noise have been investigated.  Acceptance testing was also performed to 

investigate vibration sensitivity and screen for workmanship defects.   

The performance and characterization results verify that the MEMS subsystem is 

able to meet the flight requirements for rates >0.1°/sec, while the acceptance tests 

demonstrate the robustness and reliability of the unit.  
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I. INTRODUCTION  

A. BACKGROUND 

 The Naval Postgraduate School Spacecraft Architecture and Technology 

Demonstration Satellite (NPSAT1) program is an effort belonging to the growing trend 

toward smaller spacecrafts, driven by the need to develop simpler and modular systems 

[1].  The primary goal of this thesis is to certify and characterize the commercial off-the-

shelf (COTS) MEMS devices for flight on NPSAT1 and possible implementation into 

future missions. 

This research builds on and extends the thesis titled “Characterization, 

Optimization, and Test for the NPSAT1 MEMS 3-Axis Rate Sensor Suite for use in 

Small Satellite Attitude Control,” by Maj. Thomas S. Pugsley, USA, published in 

September 2007 [2].  In Maj. Pugsley’s thesis, the MEMS 3-axis rate sensor suite was 

fully tested and characterized.  The experimental results proved the sensor suite’s 

effectiveness as a relatively low-cost, low mass augmentation to the magnetometer for 

satellite rate determination, as well as its ability to measure very low rates.  He then 

modified the original design and operations of the sensor suite to maximize its accuracy 

and utility.  A complete flight-like subsystem was built and tested.  After the completion 

of [2], this MEMS subsystem was processed for flight and was considered the flight unit 

for NPSAT1.  

In this research, similar tests were conducted on the MEMS subsystem proto-

flight unit.  Since the writing of [2], one of the rate sensors was replaced due to damage 

in handling; this required performance and characterization re-testing due to the unique 

compensation equations of each sensor.  Furthermore, it has been recommended by the 

program leads that the MEMS unit fly unpressurized, as pressure changes result in a rate 

bias, and there is no way to verify the pressure integrity of the MEMS unit on-orbit.  This 

new requirement needed consideration and testing to determine the unpressurized bias as 

a function of temperature.   
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This thesis sought to improve the polynomials for the rate error compensation, 

and to accomplish this using the MEMS and ACS as an integrated system.  By testing the 

subsystems together, the quality of the tests was enhanced and the interface errors were 

reduced.  Example of interface errors include offset voltages of operational amplifiers, 

parasitic capacitance, and measurement noise [3].  The tests were aimed to gain an 

understanding of error sources including, but not limited to, those identified in [2].  

Finally, 3-axis vibration acceptance testing was conducted to screen for workmanship 

defects prior to spacecraft integration.   

B. NPSAT1 OVERVIEW 

NPSAT1 is the follow-on satellite project after the small, digital communications 

satellite Petite Amateur Navy Satellite (PANSAT), launched aboard the Discovery Space 

Shuttle in October 1998.  NPSAT1 was conceived and developed by the Naval 

Postgraduate School Space Systems Academic Group (SSAG) with the primary objective 

of providing education and hands-on experience to NPS Space Systems Engineering and 

Space Systems Operations students.  Its secondary objective is to provide a platform for 

small satellite technology proof-of-concept demonstrations and to provide a platform for 

space flight experiments [4].  NPSAT1 was unable to meet its last launch opportunity in 

March 2007.  Until a new launch vehicle is selected, the program will continue to test to a 

booster launch profile of an Atlas V.  Once in orbit, NPSAT1 will provide more 

opportunities for student involvement, in operations and in earth observations. 

NPSAT1 is an 82 kg, 12-sided cylindrical satellite configured to interface with the 

expendable launch vehicle (EELV) secondary payload adapter.  It is designed for a 2-year 

mission life and its reference mission is chosen to be a circular low Earth orbit.  It is a 

gravity gradient friendly, nadir pointing, three-axis stabilized body.  In addition to the 

base plate, two equipment decks will host six experiments.  The onboard experiments 

according to [2], [5], [6] are: 

1. Coherent Electromagnetic Radio Beacon Tomography (CERTO) 

CERTO is a Naval Research Laboratory (NRL)-sponsored test that will measure 

the integrated electron density of the ionosphere in the observation plane.  CERTO will 
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also be used to (1) develop and test tomographic algorithms for reconstruction of 

ionospheric irregularities, (2) provide a database for global models of the ionosphere, (3) 

characterize the ionosphere for geolocation, and (4) perform scintillation studies of the 

ionosphere.  

2. Langmuir Probe  

This is also an NRL-sponsored test designed to augment the CERTO data by 

taking on-orbit measurements at spacecraft altitude.  The data can be processed for 

correlation with the ground observation results of the CERTO beacon.  

3. Configurable Fault-tolerant Processor (CFTP) 

The CFTP is a NPS SSAG-sponsored experiment that will use a Field 

Programmable Gate Array (FPGA) to test an adaptable and redundant computer 

architecture for reliable computing for space applications. 

4. COTS Visible Wavelength Imager (VISIM) 

The VISIM experiment consists of a COTS color digital camera and a camera 

controller board to produce less than one kilometer of optic resolution.  It is primarily to 

be used to generate data for on-board processing by the CFTP experiment and for ground 

operations by students through an Internet-based user interface.  This is an NPS SSAG 

sponsored experiment. 

5. Solar Cell Measurement System (SMS) 

The SMS will experiment with Improved Triple-Junction (ITJ) solar cells, 

perform current-voltage measurements, and produce I-V characterization plots.  In 

addition, the experimental control hardware will be investigated and provide flight 

demonstration of the ITJ [2].  This is experiment will also be provided by NPS. 

6. COTS Micro-electromechanical 3-axis Rate Sensor Suite 

The purpose of the MEMS experiment is to provide flight experience with MEMS 

devices.  The MEMS rate sensor is a three-axis rate sensor using three COTS MEMS 

devices.  Studies, calibration, and tests on non-flight units conducted by E. Okano (2001) 

and T. Pugsley (2007) showed the feasibility of BEI Systron Donner QRS11 high 
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performance rate sensor to measure below its ±5°/s design range specification.  The 2007 

results demonstrated that the MEMS could accurately resolve rates as low as 1/7 of the 

orbital rate; it was also demonstrated in [2] that this resolution could be further improved 

to 1/16 of the orbital rate using extended averaging.  Although the sensor may be capable 

of measuring suborbital rates, the working resolution is limited by the interface 

electronics and the software.  The Attitude Control System (ACS) is not currently set up 

to perform rate sampling longer than one second.  Hence, the resolution of the MEMS is 

limited by the ACS control algorithm.  The MEMS would not meet requirements for 

space applications at orbital rates, but it will be used at launch vehicle separation where 

tip-off rates can be high.   

A new packaging requirement has been added to this experiment, requiring 

recalibration of the flight sensors.  In this thesis, retesting was conducted on the MEMS 

subsystem, as it would be configured in the flight setup with the ACS.  Acceptance 

testing was also performed.  This is an NPS sponsored experiment. 

In addition to the experiments above, NPSAT1 will also include NPS-built 

technology demonstration payloads.  NPSAT1 has four major subsystems that will utilize 

experimental components [2], [5], [6].  

1.  Command and Data Handling Subsystem (C&DH) 

The Command and Data Handler will demonstrate the ability of COTS, PC-

compatible and open source technology for space applications.  This subsystem contains 

a motherboard, a mass storage and A/D and digital output board, the configurable fault 

tolerant processor (CFTP) experiment board, a power supply and modem and radio 

frequency component which are housed in one box and attached to a PC/104 bus.  

2.  Radio Frequency Subsystem (RFS) 

The radio frequency subsystem is a full duplex communication system providing 

100 kbps for uplink and downlink to the ground communication station.  The uplink 

channel operates at 1767.565 MHz and the downlink channel operates at 2207.3 MHz.  

NPSAT1 has antennae pairs for both nadir-pointing and zenith-pointing capabilities [4]. 
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3. Electrical Power Subsystem (EPS) 

The electrical power subsystem consists of advanced triple junction solar cells, 

experimental lithium (Li-ion) battery, and the power distribution and control electronics 

composed of a digital processor board and an analog switching board [4], [5]. 

4. Attitude Control Subsystem (ACS) 

The attitude control subsystem is used for three-axis stabilization; it consists of 

three magnetic torquer coils for actuators, a three-axis magnetometer as the sensor, and 

the ACS controller.  The magnetic control approach of NPSAT1 relies on favorable 

moments of inertia by optimum equipment placement and ballast [7].  

Figure 1 depicts an expanded view of the experiments and subsystems located 

within the spacecraft. 
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Figure 1.   NPSAT1 Modular Component Model (From [4]) 
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C. COTS MICRO-ELECTROMECHANICAL 3-AXIS RATE SENSOR 
EXPERIMENT, REQUIREMENTS REVIEW AND UPDATE 

There are no changes to the MEMS performance requirements.  On the other 

hand, the operational requirements have an additional requirement of operating in an 

unpressurized package.  These are discussed in detail below.  

1. Performance Requirements 

a. Rate Performance Requirements 

Initially, there were two ranges of rotational rates during which the MEMS 

would be used: 1) tip-off rates right at launch vehicle separation and 2) sub-orbital rates 

to monitor rates of the spacecraft during attitude control.  In [2], the results showed that 

the MEMS rate sensors can measure rates as low as 1/16 of the orbital rate but requires 

extended averaging and filtering to do so.  The current ACS control algorithm is not set 

up to allow rate determination longer than one second.  Consequently, the attitude control 

mode using the MEMS has become a low priority, but the possibility was kept open 

depending on the time and resources available to perform the necessary changes to the 

ACS control algorithm.  Primarily, the MEMS will be used shortly after tip-off, while the 

ACS uses its B-dot damping algorithm to reduce the rates from approximately 5 °/sec to 

twice the orbital rate or 0.132 °/sec. B-dot dampening is a rate damping scheme using 

magnetometers and magnetic torquers to detumble and align the spacecraft with the local 

B-field.  The B-dot control mode is a two-second cycle, which executes one second of 

magnetic field measurement and processing, followed by another second of torquing.  

During the torque phase, the magnetometer’s measurements of the earth’s magnetic field 

may be contaminated by the torque coils magnetic field.  It is during the torque phase that 

the MEMS will augment the ACS and provide more accurate rate data.  The MEMS is 

required to be able to provide an accuracy of within ±5% of the actual rate. 

b. Temperature Performance Requirements 

The internal temperature of the MEMS is used in the algorithm for the 

thermal compensation of the rate output.  For space operations, a calibrated temperature 

output in °C is not necessary since the voltage output corresponding to the temperature 
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values1 can be used directly for the compensation.  However, for ground testing, the 

temperature in °C is not only preferred, but also essential in monitoring the MEMS, 

especially during the thermal chamber tests.  The temperature output of the MEMS 

sensor suite had previously been limited to -40°C to +55°C; this is not an issue for space 

operations since the expected temperature range of the sensor is -11°C to +9°C.  

However, the compensation polynomials must span the entire qualification range and 

requires an upper limit of +66°C.  Prior to flight testing, a small modification was made 

to the MEMS circuit to increase the dynamic range and meet this derived requirement.  In 

[2], the accuracy of the temperature output was set to ±2% of the actual temperature.  In 

this thesis, the modified circuit was tested and the accuracy of the temperature output was 

evaluated. 

c. BIT Performance Requirements 

The built-in-test (BIT) output is a simple indicator of the operational status 

of the sensor.  If the sensor is in an operational state, the BIT output would display ≥ 2.4 

V; otherwise, it would display ≤ 0.8 V.  The BIT output on each device is collected and 

will be stored and sent as spacecraft telemetry.  If the ACS uses the MEMS for attitude 

control, the BIT will be used to determine if the MEMS data is valid. 

2. Operational Requirements 

2.1 The Launch Environment 

a.  Vibration Requirements 

NPSAT1 was not ready for the last launch opportunity in March 2007 with 

the Space Test Program 1 (STP-1) mission aboard an Atlas V, using the Evolved 

Expendable Launch Vehicle (EELV) Secondary Payload Adapter (ESPA).  Until a new 

launcher is selected, the program will continue to test using the launch profile for an 

Atlas V [2] as the next ESPA ring is expected to fly in 2014 on an Atlas V.  In 2005, 

qualification tests were performed on the NPSAT1 engineering development unit (EDU).  

                                                 
1 See Equation (5). 
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The NPSAT1 EDU was similar in dimension to the flight vehicle structure with dummy 

masses used in place of subsystems or components [8].  Acceptance tests are required 

both at the component and system levels on separate flight units.   

For the component acceptance test, the MEMS flight unit must be tested to 

the levels based on the NASA-STD-7000, GSFC General Environmental Verification 

Standard (GEVS), 2.4.2.5.a [9].  Accordingly, the test sequence shall start with a sine 

sweep of 4 oct/min, followed by the random vibration test using the levels shown in 

Table 1 for 1 minute/axis; a functional test shall be performed after each vibration test in 

the three orthogonal axes.  The QRS11 is specified to operate at 8 grms 20 Hz to 2 kHz 

random, survive 20 grms at 20 Hz to 2 kHz random for 5 minutes/axis, with a maximum 

shock of 200 g in any axis [14]. 

Table 1.   Component Minimum Workmanship Random Vibration Test Levels 

Frequency  

(Hz) 

ASD Level 

(g2/Hz) 

20 0.01 

20–50 +3dB/oct 

50–500 0.04 

500–2000 -3 dB/oct 

2000 0.01 

Overall 6.8 grms 

 
 

Once all component tests are completed, system-level acceptance tests 

using all flight parts would be conducted in accordance with the policy statement 

promulgate by the STP-1 mission office [8]. 
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2.2 The Operational Environment 

b.  Thermal Requirements 

Initial worst-case thermal simulations produced an operating temperature 

range for the MEMS between -11°C to +9°C, and predicted that the MEMS temperature 

would remain fairly constant around 5°C.  A safety margin was added to these simulation 

results and the operating temperature range was set to ±20°C.  This operating range will 

be used until a new reference orbit is determined and new thermal analyses can be 

performed [2]. 

The flight acceptance and qualification of a non-operating flight-unit is     

-29°C to +66°C.  The MEMS subsystem must meet this temperature range and survive 

with no catastrophic failures.  The QRS11 has an operating temperature range of -40°C to 

+80°C, hence the sensor specification provides sufficient margin during characterization 

testing.   

c.  Radiation Requirements 

The QRS11 sensor was originally designed for missile guidance and 

control applications; it was not designed for space applications and the space 

environment where radiation is an issue.  Due to its recent applications in space, 

however, radiation tests have been performed by one of SDI’s customers [2].  Testing 

included total dose (Cobalt 60, increments up to 80 Krad), and heavy particle 

(Californium 252 to a fluence of 1.9 x 106
 particles/cm2).  No effects due to radiation 

were noted in these tests and their results suggest that the risks from on-orbit radiation are 

negligible [2].  No further radiation tests are planned for the MEMS subsystem. 

d. Vacuum Pressure Decay 

The vacuum pressure for a typical mission can be expected to decrease 

from 1.013x105 N/m2
 (760 Torr) on Earth to 1.33 x 10–3

 N/m2
 (1x10–5

 Torr) in deep space 

[10].  This change in pressure would result in rate bias offsets, as was observed in the 

tests conducted by A. Cropp, et al in 2006 [11].  A permanent hermetic seal is very 

difficult to achieve.  Additionally, NPSAT1 has no system capability to check the 
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pressure integrity of the MEMS; there is no feature to verify that all the seals of the 

MEMS assembly will hold and maintain a certain pressure level set on ground.  Due to 

these vacuum effects, a recommendation was made after the writing of [2] that the 

MEMS unit would fly unpressurized.  This requires a new set of compensation 

polynomials that would correct the effects of changes in pressure in addition to changes 

in temperature.  The MEMS unit must meet the performance requirements in vacuum. 

2.3 Spacecraft Interface 

e. Input Requirements 

The MEMS sensor suite will be provided by the spacecraft bus with ±6 

VDC and a common return through three pins of a 15-pin connector, linking the MEMS 

wiring harness to the ACS.  The QRS11 sensors require an input of ±5 VDC, with a 

tolerance of ±3%.  The sensor is sensitive to power line noise and noise must be 

minimized in the 7 kHz to 10 kHz band.  In [2], a Power Regulation and Control Board 

(PRCB) was built to regulate and filter the input to the MEMS.  The PRCB was tested 

and the results yielded a voltage regulation error of only ±0.2%.  Furthermore, all power 

and signal grounds must be connected at only one point to avoid ground loops, which 

would result in bias shifts [12]. 

f.  Output Requirements 

The MEMS must provide the ACS with rate, temperature, and BIT data 

for all 3-axes using the single 15-pin connector allocated to the MEMS device.  It must 

also interface with the wiring harnesses.   

D. ACS, MEMS, AND C&DH OPERATION 

The ACS uses the change of magnetic field to align the spacecraft with the local 

B-field.  Figure 2 depicts the processing diagram for the ACS, MEMS, and C&DH.  The 

process starts with the sampling phase.  Within this block, the analog magnetometer 

signals are converted into digital signals.  Temperature compensation computation is 

done on the ACS board.  Data processing, as explained in [5], begins with the field 

measurement phase where the ACS calculation of the mean of the last four magnetic field 
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measurements.  This average is used as an input to the control torque algorithm run on 

the C&DH, which includes attitude and requested torque calculation.  This torque request 

is sent from the C&DH to the ACS and converted back into an analog signal, which 

actuates the torque coils.  The torquers are then allowed to relax and stabilize after 

actuation.  The rate measurements acquired by the magnetometer during torquing may be 

corrupted by disturbances from the torquer’s magnetic field.  For this reason, the MEMS 

sensor suite was selected to augment the system and supply the ACS with more accurate 

rate data while the torquers are being used.  The MEMS operation is similar to the 

magnetometer.  First, the rate measurement averages are sent to the ACS for bias 

compensation.  The rate data are then sent to the CD&H and is used to estimate B-dot.  

This estimation is described in detail in [13].  The torque request is then sent back to ACS 

and converted back to analog signal, which actuates the torque coils.  
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Figure 2.   ACS, MEMS, and CD&H Data Processing Diagram (After [5])  
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II. MICROMACHINED VIBRATORY GYROSCOPES 

MEMS-based gyroscopes are becoming a viable alternative to expensive and 

bulky conventional sensors.  The BEI Systron Donner QRS11 gyrochip, selected for the 

NPSAT1 experiment, has demonstrated its use in space in several missions, including but 

not limited to: 1) NASA STS-64, SAFER Experiment, 1994, 2) NASA Mars Rover 

Mission, Sojourner, 1996, 3) NASA STS-87, AERcam Experiment, 1997, 4) Surrey 

Satellite Technology Ltd, UoSat12, 1999, 5) ESA Integral Spacecraft, 2002, 6) ESA 

Smart 1, 2003, 7) ESA GIOVE-A Spacecraft, 2005, 8) ESA Planck Probe, 2009, and 9) 

ESA Herschel Space Observatory, 2009 [2].  The following covers some of the basics of 

the QRS11. 

A. BEI SYSTRON DONNER QRS11 SENSOR 

The QRS11, as shown in Figure 3, is a high performance rate sensor that features 

Quartz MEMS technology, providing a compact and lightweight sensor.  There are no 

moving parts in this solid-state gyro design, making it reliable and durable with virtually 

unlimited life [14].   

 

Figure 3.   QRS11 unit 

The QRS11 sensor’s operation is based on the tuning fork principle, shown in 

Figure 4.  The sensing element is made of piezoelectric quartz material configured into an 

‘H’ fork, forming the drive and pickup tines.  The input tines are driven at their resonant 

frequency of about 10 kHz.  A Coriolis torque is produced when the sensor is rotated 

about the input axis, which oscillates with the drive tine mass velocity.  Momentum is 

transferred to the perpendicular plane of the vibrating tines, which bends the pickup tines.  
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Due to this displacement, an electrical signal is produced proportional to the input 

rotational rate [15].  The signals are routed through the mount and then amplified and 

demodulated into a DC signal proportional to the rotation [16].  

 

Figure 4.   Tuning Fork Principle of Operation (From [15]) 

The QRS11 general specifications can be found in Appendix A.  NPSAT1 uses 

the high-performance option (-101), non-standard range (±5 °/sec max rate), and the low 

noise option (-565).  Further details about the QRS11 can be found in [2] and [16]. 

B. ERROR SOURCES 

Since this thesis deals with the MEMS rate sensor triad and the ACS 

measurement system, we address not only the error characteristics of the MEMS alone 

but also those errors that arise from the experimental setup, methods, and other 

components of the system.  This section begins with some general sources of 

uncertainties taken after concepts from [17].  Then, a discussion of sensor-specific error 

fundamentals follows.   
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1. General Error Sources 

Errors in a measurement system include fixed, systematic errors that remain 

constant in repeated measurements under fixed conditions, and a random error 

component that can be described by statistical estimates.  Measurement errors can be 

grouped into three error source groups: calibration, data-acquisition, and data-reduction 

errors.   

Calibration errors are those that enter into the measuring system by the errors 

inherent to the standard used in the calibration and the manner in which the standard is 

applied.  Examples of these elemental errors for this experiment include uncertainties 

from the laboratory standards, such as the thermometer used in the temperature output 

calibration, and the turntable used for angular rate tests. 

 Data-acquisition errors originate during the act of measurement and come from 

measurement system operating conditions, sensor-transducer stage, signal conditioning 

stage, output stage, process operating conditions, sensor installation effects,  

environmental effects, spatial variation error, temporal variation error, etc.  Some of the 

most difficult sensor errors to quantify are in this group. 

Lastly, data-reduction errors are introduced into the test results with the use of 

curve fits and correlations.  Uncertainty associated with the calibration curve fit, 

truncation or other computational operations, and the number of significant figures 

contributes to this error group.  

2. MEMS Inertial Sensor Errors 

The previous section briefly discusses general error sources in a measurement 

system.  These potential error sources were addressed as much as possible during the test 

setup, measurement, and data analysis in support of determining the error components for 

the gyroscope model that will be presented in Section C.  However, it is not feasible to 

eliminate all errors.  Hence, the main results are focused on selected sensor-specific error 

characteristics from the facts and definitions below, according to [15], [18], [19], [20], 

and [22]:   
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a. Bias  

Bias or the zero rate output is defined as the average over a specified time 

of gyro output measured at specified operating conditions that have no correlation with 

input rotation, typically expressed in °/sec or °/hr.  Several factors affect bias; the four 

components that this thesis is mainly focused on are [19], [22]: 

1.  Systematic or constant portion of the bias:  This constant error is 

independent of force or angular rate and is sometimes referred to as the g-independent 

bias.  This fixed error contribution can be corrected or estimated by the ACS processor 

using laboratory data. 

2.  Run-to-run or repeatability bias:  This error contribution is different 

between runs but remains constant during a particular run.  This run-to-run variation 

cannot be corrected by the processor but it can be eliminated in the alignment or 

integration algorithms. 

3.  Systematic portion of the in-run or stability bias:  In-run bias has a 

systematic and random portion.  Herein, the systematic contribution is due to the 

environmentally sensitive components of the drift rate.  Specifically, the tests were 

designed to investigate the effects of temperature, pressure, temperature hysteresis, and 

vibration.  Other examples of environmental parameters (although outside the scope of 

this thesis) include acceleration sensitivity and temperature gradient sensitivity.  The 

environmentally sensitive component of drift rate can be corrected by the processor using 

polynomials derived from laboratory tests.   

4.   Random portion of the in-run or stability errors (also referred to as 

random drift rate):  This is the residual bias after the error compensation of the 

deterministic portion.  It is also the time-varying component of the bias.  These random 

errors can only be modeled as stochastic processes and cannot be corrected by alignment 

or by the processor.  For attitude control applications, periodic recalibration to an external 

reference would have to be performed to minimize the effects of long-term drift [28].  
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Random drift rate is commonly modeled using the Allan variance technique.  It is 

described by the following Allan variance components [20]: 

a)  Angle Random Walk: The angular error buildup with time that 

is due to white noise in angular rate, typically expressed in °/√hr or °/s/√hr. 

b)  Bias Instability: The random variation in bias as computed over 

specified finite sample time and averaging time intervals, characterized by 1/f power 

spectral density, typically in °/hr. 

c)  Rate Random Walk: The drift rate error buildup with time that 

is due to white noise in angular acceleration, typically expressed in °/hr. 

b. Scale Factor 

Scale factor is defined as the ratio of a change in output to a change in the 

input intended to be measured, typically specified in mV/(°/sec).  Scale factor error is 

evaluated from the slope of the least squares straight line fit of the input-output data.  

Scale factor error specifications include [20]: 

1.  Linearity error: The deviation of the output from least-squares linear fit 

of the input-output data.  It is generally expressed as a percentage of full scale, or percent 

of output. 

2.  Nonlinearity: The systematic deviation from the straight line that 

defines the nominal input-output relationship. 

3.  Scale factor temperature and acceleration sensitivity: The change in 

scale factor resulting from a change in steady state operating temperature and a constant 

acceleration. 

4.  Asymmetry error: The difference between the scale factor measured 

with positive input and that measured with negative input, specified as a fraction of the 

scale factor measured over the input range. 
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5.  Scale factor stability: The variation in scale factor over a specified time 

of continuous operation.  Ambient temperature, power supply, and additional factors 

pertinent to the particular application should be specified. 

c. Nonorthogonality/Misalignment 

These errors arise from imperfections in mounting the sensors, resulting in 

the misalignment of the inertial sensors with respect to the orthogonal axes of the body 

frame.  This misalignment makes the sensors sensitive to the input rates along the 

respective orthogonal axes.  The nonorthogonality factor is evaluated similarly to the 

scale factor by taking the slope of the fitted line of input-output data of the sensors 

orthogonal to the input axis. 

Other typical specifications include: operating range, resolution, 

bandwidth, turn-on-time, linear and angular vibration sensitivity, shock resistance, 

operating life, operating temperature range, thermal shock, thermal cycling, humidity, 

electrostatic discharge immunity, and electromagnetic emissions and susceptibilities.  A 

full listing of specifications and general test procedures outlines can be found in [18].  

Additionally, other factors that can affect the performance of the sensors can be found in 

[21]. 

C. GYROSCOPE ERROR COMPENSATION 

From [19], the model for a single-axis gyroscope measurement of the angular rate 

is given by: 

       (1)

where, 

  is the measurement in °/sec 

  is the true angular velocity in °/sec 

  is the systematic or constant portion of the bias removed by the 

calibration process  
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  is the repeatability bias. 

  is the stability bias.  

  is the gyroscope scale factor error in ppm or %.  S is the error from the 

ideal scale factor Sf of 0.5 V/(°/sec).   

  accounts for the nonorthogonalities or misalignment errors of the 

gyroscope, in ppm or %.  

  is the gyroscope sensor noise. 

The error compensation in this thesis was structured according to Equation (1) 

above.  The compensated rates are then given by: 

 (2)

Note that the above equation is in bold to indicate the vector form of the 

processed output with X, Y, and Z components.  Tilde is used above to denote the 

estimated angular rate and to distinguish from the ideal value ω, where      

and  represent additional errors unaccounted for by Equation (2)2.  Also, the scale 

factor error S and nonorthogonality N are combined into a matrix, represented by the 

factor M [22]: 

 (3)

where the diagonal Sα elements are the scale factor errors, the off-diagonal mαβ elements 

are the misalignment errors, α is the test axis, and β is the nonorthogonal axis where the 

error is sensed. 

Furthermore, bin-run is a cubic polynomial for the compensation of temperature and 

pressure-dependent biases.  Finally, the quantities placed in parenthesis are the errors that 

can be compensated for by the ACS processor using test data.   

                                                 
2 For example, additional errors such as acceleration dependence, which was not part of the test series. 



 

 22

In addition to fulfilling the NPSAT1 test and specification requirements,  the 

underlying objective of the following tests is to determine the systematic error 

components of the above equation. 
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III. TEST PREPARATIONS 

A. TEST UNIT DESCRIPTION AND CHANGES 

The test unit in this thesis is the modified MEMS flight subsystem assembly used 

in the preceding thesis.  Since the writing of [2], the test unit was processed for flight and 

minor changes and improvements were made to satisfy the new requirement of flying 

unpressurized.  Flight processing includes standard parts cleanup, wire replacement, 

conformal coating of boards, and thread locking of fasteners.  In addition, three changes 

to the test assembly were made.  First, a new QRS11 sensor was installed to replace the 

damaged Y sensor.  Second, the Power Control and Filter Boards’ (PCFB) temperature 

filter gain for all three sensors were changed from 13 to 8 to increase the MEMS 

temperature output range.  Third, the two vent holes on the housing, as shown in Figure 

5, were unsealed to allow the pressure inside the assembly to equalize to the external 

pressure.   

 

 

Figure 5.   MEMS Flight Subsystem 

Vent holes 
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Figure 6.   MEMS subsystem without cover 

The changes in the tests conducted in this thesis also extended to the data 

acquisition method.  Previously, the MEMS output was read using a WebDAQ, a data 

logging and acquisition device.  Interface circuit errors must be accounted for in drift bias 

compensation [3].  While the WebDAQ was sufficient for the initial evaluation tests, the 

bias compensation equations must account for the sensor biases and the actual flight 

circuit interface errors.  Since the concentration of this thesis is to re-evaluate the sensors 

for in orbit performance, testing the MEMS and ACS in their flight configuration would 

render better results.  Subjecting the two units in same test environment and using the 

processed ACS output to obtain the compensation curves would produce the fewest 

residual errors in the curve fitting.  The ACS is shown in Figure 7.  

 

Figure 7.   ACS 

The data acquisition software operation was also different.  In the preceding 

thesis, the software was started prior to powering the MEMS test unit.  This allowed 

capturing the sensor output from the instant it is turned on until it fully transitioned to its 
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operational state.  The software version used in this thesis required the MEMS electronics 

to be turned on before software can be enabled to record and save data.  This has little 

impact to the data collection, but it is noted here for the purpose of accounting for an 

additional delay in the startup or stabilization time of the subsystem.  

B. TEST FLOW  

A top-level test diagram is provided in Figure 8:   

 

Figure 8.   Test Flow 

In the diagram above, the test series begins with ambient tests similar to those 

performed in [2].  First on the list is Startup Profile and Short Term Bias testing, which 

consists of powering the MEMS from the ACS and gathering rate information while the 

MEMS is stationary to determine the rate output stabilization time.  Verification of the 

built-in-test (BIT) was performed and temperature measurements were noted and 

compared to what is considered normal values as a way of determining proper operation.  
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This test was conducted as the first in the series to establish a baseline, and then repeated 

before conducting each of the other tests to ensure that the setup was correct.  In addition 

to its basic ground testing purposes, a crucial goal of this test is to determine the startup 

behavior in vacuum.  From an operations view, it would be useful to estimate any error 

introduced to the attitude control system during the warm-up period [23].  The vacuum 

startup profile test was conducted later in the series. 

Nominal Voltage testing was then conducted to calibrate the MEMS temperature 

output.  A calibrated temperature is not necessary for space operations; however, the 

temperature output was very useful in performing the succeeding chamber tests.  The 

nominal voltage test was performed by setting the MEMS unit on a re-circulator and 

measuring the steady state temperature output of each sensor at 25°C.  The nominal 

voltage is represented by the symbol Vn. 

Next, a sequence of chamber tests were conducted—in ambient and under 

vacuum, to produce two sets of bin-run compensation polynomials.  The Ambient Pressure 

Chamber Tests were performed to determine the thermal compensation polynomials for 

ground testing3 and comparative purposes.  The ambient bin-run polynomial represents the 

deterministic and temperature dependent portion of the in-run bias.  The MEMS unit was 

subjected to the full qualification range of -29°C to +66°C.  The temperature dependence 

of the sensor rate output was eliminated by estimating the zero-rate bias over the full 

qualification range using a 3rd-order polynomial.  The chamber tests also include subtests 

to investigate and address hysteresis effects noted in [11].  In addition, repeatability tests 

were conducted to investigate the correlation of rate bias offsets to the startup 

temperature of the MEMS and electronics (brun-run).  In the Vacuum Chamber Tests, 

mechanical noise testing and vacuum degree tests were first conducted to verify the 

setup.  Then, the ambient pressure chamber tests were repeated in vacuum to derive the 

in-orbit polynomials or the flight bin-run.   

After the chamber tests, Rate Transfer Testing was conducted to compare the 

angular rates measured by the MEMS to that given by a rotary table.  Rate tests were 

                                                 
3 Using the flight bin-run during ground tests would result in rate offsets. 
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performed at tip-off rates, orbital rates, and at earth rate.  The data collected in these tests 

were thermally compensated using bin-run and then used to estimate the accuracy of the 

MEMS per the 5% error requirement set in [2].  Moreover, the data was used to derive 

the fixed portion of the bias bcons and the scale factor characteristics S and the 

nonorthogonality constants N in the form of matrix M.  Note that the sensors’ resolution 

were estimated using the in-run drift only, since at the time of these tests, the ACS 

software is only designed to use in-run drift and did not include the rest of compensation 

terms of Equation (2).   

The final test performed in this thesis was the Random Vibration Test.  This is an 

environmental test to validate that the MEMS flight unit can withstand the launch vibro-

acoustics environment.  Testing was performed at acceptance levels in each of three 

orthogonal axes, followed by a baseline functional test and inspection.  Pre- and post-vibe 

test data were analyzed to determine the vibration sensitivity of the MEMS and the 

repeatability of its output, scale factor, and nonorthogonality. 

C. TEST EQUIPMENT 

1. Hardware  

The test hardware varies by test.  The main test component list is as 

follows:  

 MEMS Rate Sensor Assembly 

 Cole Parmer polystat® Recirculator and Cold plate 

 Tenney Thermal Vacuum Chamber (TVAC) 

 TVAC Harness 

 HAAS TRT-7 2 Axis Tilt and Rotation Table (TRT) 

 HAAS Harness 

 ACS 

 MEMS Bracket for HAAS 

 Agilent E3236A Power Supply 

 Omega Engineering 4 channel Hand Held Thermometer (HH147) 

 Precision Level 
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 RS422 Transceivers 

 Computer 

 Vibration table 

 Camera 

 MEMS mounting plate for the vibration table 

2. Software  

A Python program was used for data acquisition.  The program user interface is 

shown in Figure 9  displaying ACS system outputs.  This interface allows the user to 

enable the test and select database save intervals.  FlameRobin, a database administration 

tool, was used to retrieve information from the database.  OriginPro, MS Excel, and 

MATLAB were used for data analysis and graphing. 

 

Figure 9.   Python Data Acquisition Readout 

D. DATA FLOW  

The ACS data processing flowchart, updated since the completion of [2], is shown 

in Figure 10.  Rate, temperature, and BIT information from the rate sensors are filtered 

through a low pass filter.  A gain G is applied to the temperature output only.  Then, all 

three data sets are sent to the ACS accumulator program where the rate data are averaged 

200 points/sec.  The ACS uses a 12-bit analog to digital (A/D) converter with a dynamic 

range of 0 to 5 V; 212 or 0 to 4095 counts are possible and the resulting step size is 1.22 

mV.  The output requires that all three data types be measured with respect to ground to 

obtain the most accurate data.  The spacecraft bus voltage of 28 V is regulated down to 
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±15 V by a DC/DC converter in the ACS.  This ±15 V is further regulated down to 2.5V.  

The MEMS data would all be shifted down by 2.5 V.  As the voltage references drift with 

time and temperature, this 2.5 V reference fluctuates slightly.  To correct for the voltage 

drift, measured values of the temperature (Tshift) and rate (Rshift) voltage references are 

used instead of 2.5 V constants [23].  The voltage conversions are summarized in the 

following equations: 

  V
bits

4095
5  (4)

  V
bits

4095
5  (5)

V
bits

4095
5  (6)

The ideal output vs. applied rate relationship is described by:  

V ω (7)

where Vout is the output voltage of the MEMS, Sf is the ideal scale factor,  ω is the 

applied rate in °/sec.  Conversely, the measured rate using Equation (5) is then: 

1
 (8)

Above, the ideal scale factor of 0.5 V/(°/sec) is used for the output voltage 

conversion to °/sec.  The scale factor error S is taken into account as a separate entity.  

For the test configuration, the raw MEMS output and voltage references were the 

minimum data required to perform the analyses.  The final form of the MEMS output  

would use the compensation factors described in Equation (2).   

The temperature data, on the other hand, is converted to °C using Equations (10), 

(11), and (12).  The raw and converted data are saved to the database at a user defined 

interval n and ACS ID number.  The variables are saved to the database under more 

descriptive names, shown in capital letters in Figure 10.    The data can be accessed for 

analysis by date and time stamps or the assigned ACS ID #. 
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Figure 10.   MEMS–ACS Data Processing Flowchart  (After [2]). 
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IV. PERFORMANCE AND ACCEPTANCE EVALUATION TESTS 

The performance envelope of the MEMS sensor suite was investigated and 

characterized using a three-part process [15]: (1) coarse checking or evaluation using 

simple tests, (2) static testing and/or calibration, and (3) dynamic testing.  Coarse 

checking includes startup tests to verify that all the right electrical connections were 

made and that the expected signals from the QRS11 output were received.  Moreover, it 

includes simple checks against the manufacturer’s data sheets and previous test results.  

Static tests, such as temperature calibration, thermal, pressure, and earth rate tests, were 

performed with the sensor assembly kept fixed in one position while observing the 

response to a specific natural effect.  The data collected in these tests were used either for 

calibration or for compensation.  In dynamic tests, such as the rate tests, the sensor suite 

was subjected to motion and the response of the subsystem to the disturbance was 

monitored and compared with the stimulus.  

Typically, there are three distinct categories of sensor testing: qualification, 

acceptance, and reliability tests.  The definitions of these categories, as well as the testing 

and calibration schemes, may vary depending on the development phase.  In this thesis, 

the terms “performance” and “acceptance” testing describe the tests performed on the 

MEMS sensor assembly prior to integration.  The objective of the performance and 

characterization testing is to establish whether the device conforms to the manufacturer’s 

specification and if the MEMS sensor is still appropriate to the project application, given 

the new requirement of flying unpressurized.  On the other hand, the philosophy of 

acceptance testing is to establish that the sensor system is compatible with the host 

vehicle, that it will achieve the required accuracy, and comply with the project 

application objectives.  The Lightband separation system from Planetary Systems, Corp. 

(PSC) is considered the most likely candidate for the launch system [24]; and the tip-off 

rate performance requirements are based on the rates imparted to the spacecraft at launch 

vehicle separation by the Lightband system.  Acceptance testing is based on the NASA 

GSFC General Environmental Verification Standard (GEVS). 
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A. STARTUP PROFILE AND SHORT TERM BIAS TESTING 

The objectives of the startup profile and short term bias testing are (1) to develop 

a basic understanding of the startup behavior of the outputs and (2) to verify the operation 

of the MEMS unit.  The basic setup to run a startup profile requires the 28 V power 

supply, MEMS, ACS, and network computer.  In the next sections, this basic setup is 

enlarged by adding test equipment—a cold plate, a thermal vacuum chamber, or a rate 

table, to evaluate the sensor for a specific environmental or dynamic response.  For 

startup characterization purposes, this simple test is performed by turning on the ACS 

electronics and capturing stationary MEMS data for 30+ minutes.  For pretests, short ~5-

minute, stationary tests were performed at the beginning of the intended test to check the 

sensor temperature, rate, and BIT outputs and connections.   

Figures 11, 12, and 13  are typical temperature, rate, and BIT output profiles at 

room temperature and pressure.  All profiles agree with results in [2].  The temperature 

and rate profiles are shown in raw A/D bits.  The following sections will show how the 

conversion process affects these outputs.  Since no further examination or compensation 

was required for the BIT output, it is displayed here in its raw digital output form4.  

 

Figure 11.   Typical Startup Temperature Profile 

The temperature profile shows a nonlinear behavior.  Immediately after turn-on 

up to about 5 minutes, a steep transition can be observed; this period is the warm-up 
                                                 

4 See Equation (6). 
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period.  Over time, as demonstrated in [2], the graph would naturally follow the ambient 

temperature and would be cyclical, peaking and bottoming at varying daily temperature 

highs and lows.   

 

Figure 12.   Typical Startup Rate (Bias) Profile 

Initial rate transients are also seen immediately after switch-on due to internal 

heating of the sensor.  Under room temperature conditions, the warm-up period seen in 

the raw A/D output of Figure 12 is approximately from 5 (Z) to 12 (X) minutes.  The 

transition period for each sensor is subject to change with the temperature and humidity 

conditions of the day.  It will also be different in a space environment; internal heating 

would be faster in vacuum, however, the difference between the starting temperature and 

operating temperature would be larger, which would result in a longer transition period in 

vacuum.  Using Equation (5), the raw A/D outputs were converted to the equivalent rates.  

From turn-on until stable, the converted outputs changed by 0.024 °/sec, 0.017 °/sec, and 

0.019 °/sec in this particular test.  Without correction, these transients settle to X, Y, and 

Z error averages of -0.006 °/sec, 0.012 °/sec, 0.048 °/sec, correspondingly.  These are 

small but they can be significant in terms of resolving suborbital rates of interest; a small 

gyroscope bias introduces quadratic errors in velocity and cubic error in the position [19].  

It is the goal of the next several sections to reduce these zero rate biases.  The warm-up 

period is a source of error and a possible improvement in the drift compensation for this 

warm-up period is discussed in the Recommendations Section.  For these tests, the 
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datasets were restricted to t > 5 minutes to simplify the polynomial fitting and data 

analysis.  Note that these biases include orientation-dependent earth rate components, 

which will be discussed further in later sections.   

 

 

Figure 13.   Example of Startup Bit Output 

Finally, the BIT outputs, as shown in Figure 13, are all within the requirement of 

≥ 2.4 V, indicating that the MEMS are operational.  The X and Y BIT outputs display 

small spikes around the first minute after turn on, and then settles to a constant value; 

since the output values display above 2.4 V, these spikes do not affect the validity of the 

BIT data. 

B. NOMINAL VOLTAGE TESTS 

As described in [2], the spacecraft may perform routine temperature checks of all 

subsystems on-board.  If properly calibrated, the MEMS sensor temperature output to the 

ACS can be used to compute the actual sensor temperature and to eliminate temperature 

bias in the rate outputs.  Due to the changes in the MEMS assembly, retesting of the 

sensors was required to determine the nominal voltages and verify that the MEMS 

temperature output of each sensor is correct. 
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To determine the nominal temperature voltages of the QRS11 sensors, similar 

tests were performed as described in [2].  The nominal temperature voltage is defined as 

the steady state temperature voltage output of each sensor at 25°C.  Equation (9) 

describes the temperature conversion: 

25°
0.0033

 (9)

where, 

T = temperature in °C of the sensor 

Vn = nominal voltage value of each sensor5 

Tm = measured value of the temperature output in Volts 

G = new gain of the temperature filter 

As mentioned above, the gain G has been changed from 1   .  

.  
1 13  to 

1   .  

.  
1 8.  Hence, the denominator of Equation (9) reduces to 

0.0033*8 = 0.0264.   

1. Setup 

A refrigerator recirculator (Cole Parmer polystat®) and cold plate were used to 

control the temperature of the sensors.  With the MEMS assembly housing removed, 

thermocouples were attached to each of the three sensors and one to the top surface of the 

base plate.  As shown in Figures 14 and 15, the ACS and the MEMS sensors were set on 

the cold plate lined with a sheet of thermally conductive elastomer.  To offset the internal 

heating of the sensors when powered on, the recirculator was set at a temperature of 

21°C, based on earlier trials, to keep the MEMS as close to 25°C as possible.  ACS data 

was collected over a period of ~7 hours.  The thermocouple temperatures were monitored 

and manually recorded every 15 minutes.     

                                                 
5 Vn is the Tm value at 25°C. 



 

 36

 

Figure 14.   Cold Plate Test Setup 

 

 

Figure 15.   Cold Plate Setup 

2. Results 

The MEMS outputs are shown in Figure 16 for the total length of the test.  Due to 

the sensitivity of the sensors and the fluctuations in the setup, the extraction of Vn was 

confined to the most stable region of the test.  The region from time t1 = 120.93 to t2 = 

238.62 mins (~2 hours) was the range used to calculate the nominal voltages of the three 

sensors.  There is a slight slope in the order of 10–6 volts/min for all of the lines in this 
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region.  For the purpose of this calibration, this area was considered “flat,” recognizing 

that this could be a source of error and a limitation of the models generated from this 

experiment (see also Error  Sources section).  The nominal values were calculated from 

the raw A/D MEMS temperature output values by first converting to voltage values using 

Equation (4). 

 

 

Figure 16.   Tm values for the total length of test 

Tm values from t1 to t2 were then averaged to get the nominal voltage temperature 

values.  The new nominal values along with the corresponding thermocouple temperature 

average (Tave) are shown in Table 2: 

Table 2.   New Nominal Voltage Values 

Sensor  Vn  (V) STDV Vn 

(V) 
Tave (°C) STDV Tave 

(°C) 
-X -0.5042 0.0011 25.7 0.1 

Y -0.4909 0.0011 25.4 0.1 

-Z -0.5071 0.0010 25.3 0.1 

 

To calculate the actual temperature of the MEMS for any value of Tm, Equation 

(9) was modified for each sensor.  The resulting equations are: 
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25.4°
0.4909

0.0264
 

 

(11)

25.3°
0.5071

0.0264
 

 

(12)

Using Equations (10) - (12) to convert the MEMS data to °C, the MEMS and 

thermocouple temperatures were compared as shown in Figure 17.  The average 

difference between the thermocouple and the calculated MEMS temperatures in the “flat” 

region are: 0.036 °C (-X), 0.034°C (Y), and 0.032°C (-Z).  While these results show a 

very small thermal difference between the MEMS and the calibrating instrument, the 

precision of this calibration is limited to temperature near or at 25°C.  This will be 

discussed further in the following section. 

 

 

Figure 17.   Comparison of thermocouple and calculated MEMS output 

3. Limitations of Temperature Model 
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sensor and the sensor shell where the thermocouples were placed makes a precise 

calibration difficult.  Moreover, Equation (9) assumes a nominal slope of +0.0033 V/°C 

for each sensor.  Consequently, output errors can be expected with temperature rise or 

drop from 25°C.  Figure 18 shows a test comparing the MEMS to thermocouple 

temperatures.  The difference between the MEMS and thermocouple seen here is as much 

as 4°C.   

A more extensive calibration process would be required to determine the unique 

slopes of each sensor by performing additional soak tests at different temperatures to 

measure the output change of the units per °C.  As experienced with the nominal voltage 

test, stabilization could take several hours to reach.  Due to limited time, such tests were 

not possible.  It is, however, not essential to have a precisely calibrated system to perform 

the ultimate goal of temperature bias compensation.  Thus, testing was continued without 

an accurate temperature output.  While not a necessity for space operations, the work 

performed in this section was very useful in performing the succeeding chamber tests.  

With issues such as thermocouple adhesion problems and having a limited number of 

chamber ports, the MEMS temperature output served as a valuable feature for monitoring 

the unit temperatures during thermal ramp tests. 

 

 

Figure 18.   Temperature Comparison 

0 2 0 4 0 6 0 8 0 1 0 0 1 2 0
0

5

1 0

1 5

2 0

2 5

T
em

pe
ra

tu
re

 (
°C

)

E la p s e d  T im e  ( m in s )

 T 1 ( X )
 T 2 ( Y )
 T 3 ( Z )
 C V  M E M S  T E M P  X
 C V  M E M S  T E M P  Y
 C V  M E M S  T E M P  Z

N o  T h e r m o c o u p le

      D a ta  



 

 40

C. THERMAL RAMP TESTING IN AMBIENT PRESSURE 

Following the thermal validation, thermal ramp tests were conducted to determine 

the new temperature-dependent rate bias compensation values for each sensor or the 

thermal dependent bin-run.  Since the dynamic tests involved operating equipment in an 

ambient environment, separate polynomials were required for ground tests.  The 

polynomials generated in this section/series were used to evaluate data from the rate 

transfer tests, and pre- and post-vibe functional tests.  Similar to the methodology of [2] 

and [11], the temperature dependence of the sensor rate output was determined by 

estimating the zero-rate bias over the full qualification range of -29°C to +66°C using a 

3rd-order polynomial.   

This test series also includes subtests to investigate and address hysteresis effects 

noted in the tests conducted [11].  While these hysteresis tests were being conducted, rate 

bias offsets were observed with magnitudes correlated to the startup temperature of the 

MEMS and electronics.  Thus, in conjunction with the hysteresis tests, experiments were 

run at different starting temperatures to investigate the aforesaid effect. 

1. Setup 

Due to the different test temperatures, two setups were required to perform the 

tests in this series: a thermal vacuum chamber (TVAC) setup and a cold plate with 

recirculator setup.  The thermal vacuum chamber was required to meet the full 

qualification range.  On the other hand, the cold plate with recirculator allowed for better 

temperature control that could not be performed as well by the TVAC.   

a. Thermal Vacuum Chamber Setup 

The MEMS assembly and ACS were placed in the thermal vacuum 

chamber shown in Figure 20.  The chamber temperature was pre-heated or pre-cooled to 

the test temperature.  The electronics were kept off during the pre-heating period to 

prevent overstressing the electronics in the event that the TVAC heater overshoots the 

temperature set point.  Thermocouples were used to monitor the MEMS mounting blocks.  

The electronics were occasionally turned on to check the actual MEMS readout (which 
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was approximately ±16°C compared to the mounting block).  All vent valves were open 

during tests to keep the chamber at ambient pressure during data collection.  The chamber 

operation by test is as follows: 

1.  Thermal Ramp.  For this test, the chamber was preheated so that the 

MEMS temperature output read +66°C.  Then, the chamber temperature was slowly 

lowered to -29°C while collecting data.   

2.  Hysteresis Test.  The temperature was set to the test temperature then 

reversed up or down while collecting data to determine if the MEMS rate bias output path 

is reversible.   

3.  Repeatability Test.  To test the repeatability of the output with the turn-

on temperature, several runs were conducted at different starting temperatures.  The 

chamber temperature was either raised or lowered depending on the startup temperature 

while collecting data.   

The temperature details for the hysteresis and repeatability tests can be 

found in Appendix B.  To avoid inducing noise into the system, data was only recorded in 

between cooling or heating cycles when the main switch and refrigeration or heater was 

off.   

 

 

Figure 19.   Thermal Vacuum Chamber 
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Figure 20.   TVAC Test Setup 

b. Cold Plate and Recirculator Setup 

The refrigerator recirculator and cold plate test setup described in the 

Nominal Voltage setup was used for hysteresis and startup tests at different temperatures 

near or within the operating range.  Similar to the TVAC operation, the temperature 

controller was set at the test temperature, lowered or raised, and then reversed (for 

hysteresis).  Data was captured during the thermal ramp up/down.  

2. Results 

a. Hysteresis Test Results 

Path misalignment of up to 0.004 °/sec was observed from the total of five 

hysteresis tests conducted.  The path irreversibility observed in these tests occurred 

randomly, and was seen both before and after the conversion from raw A/D bits to 

voltage.  This indicates that the variable Rshift used in the conversion process may also be 

affected by the temperature reversal, sometimes causing a shift in the voltage converted 

values.  Sample results from run Recirc2–1 are shown in Figure 21.  Each of the top 

MEMS temperature vs. MEMS Elapsed time plots shows the MEMS temperature 

reversal with time.  The middle plots are Rate bias vs. MEMS temperature in bits and the 
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bottom plots show the equivalent plots in the unit of volts.  Notice that in column 1, the 

path of the X zero-rate output is reversible in bits but not in the voltage converted form.  

On the other hand, the opposite is observed in column 2, where the Y rates in bits do not 

converge at the left endpoints while the rates in voltage form meet at the endpoints.  The 

plots for the rest of the tests can be found in Appendix D. 

 

 

 

 

(a) X temperature output        (b) Y temperature output 

 

 

 

 

 

  (c) X bias in bits    (d) Y bias in bits 

 

 

 

 

 

  (e) X bias in volts    (f) Y bias in volts 

Figure 21.   Column 1) Rate bias hysteresis result for X sensor showing path misalignment 
after voltage conversion and column 2) Y sensor showing path misalignment 

before voltage conversion 
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Since the misaligned plots of Figure 21 (d) and (e) show that two of the 

three segments in each plot coincide and that the two ‘overlapping’ segments are warm 

up and cool down paths, it can be deduced that the random misalignment of the first 

warm up segment is not due to hysteresis effects. 

b. Effect of Startup Temperature on the MEMS Rate Bias 

Rate bias offsets were observed in the raw A/D output with magnitudes 

correlated to the startup temperature of the MEMS and electronics.  Similar effects were 

also observed on the variable Rshift, which is used for the conversion of the raw rate output 

from bits to voltage.  While determining the source of these offsets require further study, 

the variation in Rshift indicates that the error source is at the board-level and not directly 

due to sensor inconsistencies.  Other possible explanations are: 1) replication errors and 

2) power regulator fluctuations.  Nonetheless, the more important point is that these 

variations are reduced after applying Equation (5).  Column 1 of Figure 22  shows several 

curves with different offsets result when the electronics are started at different 

temperatures.  On the other hand, column 2 of Figure 22 shows that upon conversion, the 

rate bias offsets with the startup temperature are reduced to millivolts, as demonstrated by 

the nearly overlaid curves.  The Rshift temperature dependence is shown in Figure 23.  The 

changes in the Rshift are proportional to the changes in the raw A/D bit rates.  So, most of 

the error is corrected during the conversion process using Equation (5).  Initially, it was 

thought that the compensation polynomials could be derived directly from the raw A/D 

bits to avoid conversion errors.  In contrary, the results here show that the compensation 

polynomials are better derived using the converted values, as done in the following 

sections. 
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Figure 22.   Sensor startup temperature effects on rate bias: (a,c,e) as seen in raw output form, 
and (b,d,f) after conversion to volts with Rshift correction 
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Figure 23.   Rshift Dependence on Temperature 

c. Polynomial Generation 

The rate bias compensation polynomials are required to span the entire 

qualification range.  Recall from the previous section that there are two data sets that 

meet this criterion, TVAC2–1a and TVAC2–2a.  While these two data sets span the 

entire range, it is the Recirc1–1a data that represents the closest startup conditions during 

ground tests.  Being “in line” with the Recirc1–1a raw data, TVAC2–1a was selected to 

generate the generic polynomials to minimize residual conversion errors.  The 

polynomials for the rate bias vs. temperature plots are shown in Figure 24.  The 

polynomial fits are in the form of y = B + m1* Tm
 1 + m2 * Tm

 2 + m3 * Tm
 3, with the 

constants shown in Table 3.    The thermal ramp curves are fitted in the units of volts 

instead of °C and °/sec to allow for later changes or fine-tuning of the MEMS 

Temperature output conversion equations without impact on the compensation equations.  

For NPS SSAG use, the constants are also provided in units of °/sec vs. °C in Table 4.  

The number of significant digits was kept as generated by the software.  In general, the 

thermal ramp profiles of the Y and Z sensors are parallel to one another.  On the other 

hand, a larger bias change is observed with temperature change for the X sensor; this is 

consistent with the results in [2] and the manufacturer specifications sheet, which 

provides the highest bias stability vs. temperature value for the X sensor (+0.266 °/sec) 

compared to Y (+0.121°/sec) and Z (0.118 °/sec).  The temperature sensitivity difference 
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between sensors may be attributed to manufacturing variations as MEMS devices may 

vary slightly from batch-to-batch, even device-to-device due to the nature of MEMS 

fabrication processes.  

 

Figure 24.   Thermal-dependent in-run biases for polynomial generation 

 

Table 3.   Cubic Bias Compensation Values in Volts (for ground tests) 

Sensor 
Bias 

Variable Value 
(V) 

Standard Error 
(V) 

Residual 
Sum of 
Squares 

Adj. R-
Square 

X B -0.03562 7.29979E-5 

0.0206 0.99775 
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Table 4.   Cubic Bias Compensation Values in °C vs. °/sec (for ground tests) 

Sensor 
Bias 

Variable Value 
(V) 

Standard Error 
(V) 

Residual 
Sum of 
Squares 

Adj. R-
Square 

X B 0.05232 1.29755E-4 

0.0824 0.99775 
m1 -0.00309 4.7811E-6 
m2 1.61507E-5 2.07221E-7 
m3 -2.06176E-7 3.81454E-9 

Y 
 

B 0.03262 1.26206E-4 

0.07846 0.98721 
m1 -0.00127 4.66779E-6 
m2 1.7812E-5 1.92079E-7 
m3 -1.99291E-7 3.56523E-9 

Z B 0.06502 1.48798E-4 

0.10881 0.9855 
m1 -0.00144 5.53673E-6 
m2 2.71648E-5 2.32928E-7 
m3 -2.97345E-7 4.3462E-9 

 

The residual biases or curve fitting errors were found by subtracting the 

results of the cubic function to the original rates.  The results are plotted in Figure 25.   

The average mean values and corresponding standard deviations are: 

1.0901E 6  V, STDVX = 0.0022633 V 

  6.9658E 7 V , STDVY = 0.0022091 V 

4.6997E 16 V , STDVZ = 0.0026016 V 

 

Figure 25.   Curve Fit Residual Plots 
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The residual plots and averages above represent only the goodness of fit of 

the generated polynomials to the TVAC2–1a X, Y, Z data sets.  There are other 

systematic and random errors in the system, which cannot be easily discerned and cannot 

be entirely eliminated or compensated for; these would appear as a small initial bias after 

compensation.  Moreover, the polynomials in Table 3 and 4 incorporate earth rate 

components relative to its particular position inside the TVAC.  The sensor orientations 

would inevitably change between tests.  These effects are especially worse for the X & Y, 

since the orientation angles could vary up to 90°.  The worst-case errors due to the 

component of the earth’s rotation Er are estimated to be (see Appendix L for details):  

 

  cos 53.6°  (13)

    0.0042°/sec   cos 53.6°  3°  

 0.0025 °/sec   0.0002 °/sec 

and, 

,   cos 36.4° 90°  (14)

        0.0042 ° sec  cos 36.4°  90°    

0.0034 °/sec   0.0034°/ sec     

d. Algorithm Testing 

To test the polynomials, the compensation was applied to data collected 

while the MEMS unit was at a stationary position and on a level surface for ~25 minutes.  

The results are plotted in Figure 26 with the following averages:  

 

X Bias: Mean = 0.0049254 °/sec  STDV = 0.0036929 °/sec 

Y Bias: Mean = -3.4307E-4 °/sec  STDV = 0.0048543°/sec 

Z Bias: Mean = 0.0093707 °/sec  STDV = 0.004325 °/sec 
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Figure 26.   Residual bias after compensation 

Calibration or compensation does not eliminate error but only reduces it.  

In [19], a comparison of calibration methods revealed that the thermal ramp method is the 

least effective at reducing bias drift compared to soak and multi-position tests.  Due to 

facility and time constraints, the tests here employed the thermal ramp method.  As 

follows, residual biases were observed after thermal compensation, as shown in the above 

results.  These errors also include data reduction errors, earth rate effects, misalignment, 

and other error sources described in Section II-B.  Without filtering or the use of other 

estimation techniques, the resolution is limited by this bias.  In Section E, rate transfer 

tests will estimate and quantify the output errors due to this bias.  First, we proceed with 

vacuum tests to produce the actual spacecraft polynomials. 
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D. THERMAL RAMP TESTING IN VACUUM 

As discussed in Chapter I, the MEMS unit is planned to be flown unpressurized 

because pressure changes results in a changing rate bias and there is no system capability 

to verify the pressure integrity of the MEMS unit in-orbit.  Chamber tests were conducted 

to determine the vacuum effects on the rate output.  The first series of tests were 

performed to determine the noise levels from the test setup.  The second and main test 

series of this section are the thermal ramp tests under vacuum.  The third and final tests 

were longer-term vacuum tests while maintaining the vacuum at < 10–5 Torr. 

The MEMS and ACS were placed in the thermal vacuum chamber and the 

chamber was pumped down to the pressure levels desired for each test.  The test setup 

and temperature controls operation are the same as the Thermal Ramp in Ambient 

Pressure tests. 

1. Noise Test 

The mechanical pump was identified as the biggest source of physical noise in the 

TVAC setup [2], [23].  To quantify the noise induced by the pump to the MEMS output, 

two ~30-minute long tests were performed: one test was run with the mechanical pump 

on and another with the mechanical pump off.  Ideally, the pressure would be constant in 

these two tests to make a direct comparison of the noise levels.  In the effort of doing so, 

the “pump on” test was conducted with the isolation, mechanical pump, and TVC vent 

valves open.  Even with all the valves open, however, the pressure still decreased by 260 

Torr.  Once the pressure stabilized (observed at 190 Torr), the ACS was turned on to 

record data.  For the “pump off” test, all valves were closed before turning off the pump 

to keep the pressure as close to that of the “pump on” test.  ACS data and pressure were 

then recorded.  During this test, the pressure raised 60 Torr, from 190 Torr to 250 Torr.  

The results of the two tests are shown in Figures 27 and 28.   
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  (a)  Temperature    (b)  Bias 

Figure 27.   Pump On Test Results  

 

 

 

 

 

 

 

  (a) Temperature    (b)  Bias 

Figure 28.   Pump Off Test Results 6 

In the “pumps on” test, the X sensor displays a longer stabilization time than the 

Y and Z sensors.  This particular behavior is consistent with the sensitivity of the X 

sensor rate with temperature, as seen in the steeper slope of the X rate plot of Figure 24 in 

the ambient thermal ramp section.  This will have to be addressed for spacecraft 

operations.  For the purpose of this noise test, the comparison is limited to the Y and Z 

sensor.  The results are summarized in Table 5.   

                                                 
6 In this test, CV MEMS RATE is the temperature compensated using the ambient pressure 

polynomials.  This will be redefined to include compensation for pressure bias further into this section.  
Note that the final form of the output will include compensation for factors described in II-B. 
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Table 5.   Noise Test Results 

Test   
(°/sec) 

  
(°/sec) 

  

(°/sec)

  

(°/sec) 

Pump On 0.0083331 0.024716 0.0041827 0.0039689 

Pump Off 0.0070684 0.025776 0.0042413 0.0041927 

 

In addition to the mechanical pump test, a simple test was run to determine the 

noise contribution from the TVC main power; this produced the same minuscule 

difference between on and off outputs as the pump test.  While there are other remaining 

noise sources in the system, such as the turbo pump and refrigeration, isolating each noise 

contributor was not possible due to a limited test time.  Thus, we have proceeded with the 

next tests based on available data from the tests performed in this section; mechanical 

noise was considered negligible. 

2. Testing at Different Vacuum Degrees 

Prior to the thermal ramp testing in vacuum, it was not known how much the 

TVAC vacuum levels would vary during the temperature ramping.  Initial calculations at 

a 560 km spacecraft altitude showed a vacuum level < 1x10–5 Torr, which was difficult to 

maintain at a constant in the TVAC.  However, literature searches show that small 

changes in vacuum levels are not likely to cause drastic changes on the sensor output, 

even though that the QRS11 is pressure-sensitive.   

 As discussed in [25], the impedance of quartz oscillators has a pressure 

dependence described by  

2
 (15)

where Z is the impedance of the oscillator due to an ambient gas, V is the driving voltage 

of the oscillator,  is the conversion efficiency of the electric energy to the mechanical 

energy,  is the phase difference between voltage and the current, A is the amplitude of 

the forced vibration, and f is the coefficient of friction drag force.  Equation (15) is based 

on the string of beads model of a tuning fork shown by Figure 29: 
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Figure 29.   String of Beads Model of a Tuning Fork (From [25]) 

At the molecular flow region, the coefficient f is described by:  

8 /  (16)

where R is the radius of the sphere, which is nearly equal to the thickness of t of the fork, 

M is the molecular weight of an ambient gas, Ro is the gas constant, T is the temperature, 

and P is the pressure. 

Due to their sensitivity to pressure, quartz tuning fork oscillators have been 

studied and developed as friction vacuum gauges [25], [26].  However, in [26], low 

pressure tests have been conducted down to 7.5E-5 Torr and the results showed that the 

sensor impedance changes decreases with pressure; impedance is around 345 kΩ to 346 

kΩ from 7.5 Torr to 7.5E-5 Torr.  Much of the output changes are expected to be seen at 

higher pressures [27].  This is supported by the results in [11], where the effects of 

vacuum were found to be relatively fixed bias offsets.  Thus, having this supporting 

information provided confidence in the test methodology in producing the spacecraft 

polynomials.   

As preparation for the thermal ramp tests, short tests were performed to verify the 

test setup and estimate the output deviations due to pressure variation.  The temperature 

compensation algorithm generated in the ambient pressure tests7,8 were applied to the 

                                                 
7 This test used a preliminary temperature algorithm derived from TVAC1-1a; the compensation 

values are similar to the flight values. For the purpose of this test, the TVAC1-1a polynomial is a 
reasonable estimate and substitute. 

8 The chamber pump down reached to 10-7 Torr.  However, this data was for MEMS ELAPSED TIME 
< 5 minutes, and thus dropped to be consistent with previous tests. 
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sensor output to correct for temperature-related rate bias.  Prior to testing, the chamber 

was baked out at 100°C for ~2 days.  All parts needed for the test were also vacuum-

baked at 70°C for ~4 hours to rid of any moisture and out gassing, which could degrade 

the vacuum during testing.  To vary the degree of vacuum, the TVAC was operated with 

different combinations of mechanical pump, turbo pump, subzero cooling, and/or feeding 

liquid N2 into the cold trap9.  Figure 30 shows the bias vs. pressure plot.   

 

 

Figure 30.   Rate (in-run bias) vs. Interpolated Pressure 

The bias plots were divided in six regions, as shown in Table 6 with the 

corresponding means and standard deviation of the means for the three sensors.  These 

results represent the estimated bias offset due to the degree of vacuum. 

 

 

 

 

 

                                                 
9 Turbo pump cannot be operated without mechanical pump; LN2 cannot be used without turbo and 

mechanical pump. 
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Table 6.   Pressure Bias Test Results 

Pressure Range 

(Torr) 

N Total X Sensor Y Sensor Z Sensor 

  

(V) 

  

(V) 

 

(V) 

  

(V) 

   

(V) 

  

(V) 
5.7E-7 to 1.5E-6 1680 0.02221 5.63582E-05 0.00327 5.07468E-05 0.01893 5.47E-05 
5.9E-6 to 1E-5 2798 0.02808 4.29143E-05 0.00209 4.44267E-05 0.02039 4.1E-05 
1E-5 to 1E-4 10 0.02211 0.000727324 0.00297 0.000743135 0.01949 0.000632 
1E-4 to 4E-4 66 0.02091 0.000263416 0.00291 0.000252338 0.01834 0.000266 
1E-3 to 2E-3 977 0.02899 6.59052E-05 9.07E-04 6.46255E-05 0.01942 6.94E-05 
2E-3 to 1E-2 4 0.02921 0.00105 3.27E-04 0.00132 0.02141 0.00104 
1E-2 to 4E-2 176 0.02821 0.000168846 5.63E-04 0.000162062 0.0218 0.000176 

 

The sensor offsets under vacuum generally remained constant from 1E-4 Torr and 

lower.  If there were any variation in the vacuum levels during the actual thermal ramp 

test, it would be in these levels.  With the results of the Noise tests and this section, we 

proceeded with the thermal ramp testing and polynomial generation assured that the 

effects of setup-related factors are at a minimum. 

3. Thermal Ramp Tests in Vacuum 

The thermal ramp test setup and procedure is the same as the ambient pressure 

test with the additional step of turning on the mechanical and turbo pumps.  The chamber 

was pumped down to 10–5 Torr and pre-heated to +66°C.  Once the desired temperature 

was reached, the temperature was lowered to -29°C.  ACS and MEMS data were 

recorded in between cooling cycles.   

a. Hysteresis Testing, Conversion to Volts, and Effect of Different 
Startup Temperatures in Vacuum 

For completeness, the characterization tests performed prior to the thermal 

ramp testing in ambient pressure were repeated under vacuum.  The results are consistent 

with the ambient hysteresis test results.  As shown by the two overlapped segments in 

Figure 31, no hysteresis was observed in vacuum.  The small misalignments of the fitted 

lines are due partially to random errors and partially to curve fit errors.  
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Figure 31.   Hysteresis (thermal and pressure in-run bias) test results in vacuum (row 1 in bits 
and row 2 in volts) 

Figure 32  show plots of sensor data started at different temperatures.  The 

X, Y, and Z data are separated in different plots to ease the comparison; the first column 

displays the rate output in bits while the second column is shown in volts.  Similar to that 

seen in ambient tests, the offsets observed in the raw A/D rate output are reduced after 

voltage conversion.  
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Figure 32.   Startup temperature effects/run-to-run bias (column 1) and correction after 
conversion (column 2) 

Figure 33 shows a comparison of the ambient (TVAC2–1a) and vacuum 

thermal ramp data (FL2–1a).  The raw outputs (a) start at a relatively constant offset from 

each other; the offset is due to difference in pressure and starting temperature.  As the 

temperature is lowered, we see the vacuum data drift from the initial fixed offset.  After 

voltage conversion (b), the drift in offset is reduced and the two data sets are once again 
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relatively parallel.  Also plotted is FL2–3a data, which is part in ambient and part in 

vacuum to show the repeatability of the tests.  Although the correction during voltage 

conversion reduces the variation, errors of up to ~0.016°/sec may still occur in both 

ambient and vacuum environments.  This is shown in (b), where one can see that the 

ambient end of the data is not completely in line with the TVAC2–1a data set.  Similarly, 

in the vacuum data of Figure 32, notice that FL2–2a (Z) was also not affected or 

corrected by the conversion process. 

 

 

 

 

 

 

 

 

   (a)      (b) 

Figure 33.   Comparison of ambient/TVAC2–1a and vacuum/FL2–1a Thermal Ramp data (in-
run bias): a) before and b) after conversion.  FL2–3a data set shows half in 

ambient and half in vacuum. 

b. Polynomial Generation 

The spacecraft polynomials were generated using the FL2–1a data, as 

shown in Figure 34.  The polynomial fits are in the form of y = B + m1* Tm 1 + m2 * Tm
 2 

+ m3 * Tm
 3 with the constants shown in Table 7 in volts and Table 8 in C vs. °/sec.  As 

established in the Vacuum degree testing section, the effects of changes in pressure can 

be approximated by a constant.  Hence, these polynomials will compensate for the 

changes in temperature, again represented by the variable Tm and the pressure dependent 

bias, which is now included in the constant B.  By comparing the B constants of Table 8 

to the ambient results in Table 4, one can see that the ambient polynomials acquired 
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additional biases of ~0.05°/sec, ~0.01°/sec, ~0.03°/sec for X, Y, and Z,  The additional 

bias shifts due to pressure change are shown in Figure 35.   

 

Figure 34.   Vacuum thermal ramp data for spacecraft compensation polynomial generation   

 

Table 7.   Spacecraft Cubic Bias Compensation Values in Volts 

Sensor 
Bias 

Variable Value 
(V) 

Standard Error 
(V) 

Residual 
Sum of 
Squares 

Adj. R-
Square 

X B -0.00809 9.42371E-5 

0.01733 0.99549 
m1 -0.05675 1.39881E-4 
m2 -0.0107 2.48778E-4 
m3 -0.00503 1.2944E-4 

Y 
 

B 0.0038 9.04443E-5 

0.01661 0.9697 
m1 -0.01519 1.30299E-4 
m2 -0.0037 2.28306E-4 
m3 -0.00402 1.23636E-4 

Z B 0.03219 1.01867E-4 

0.02021 0.96914 
m1 -0.01581 1.53371E-4 
m2 -0.01039 2.70324E-4 
m3 -0.00796 1.36271E-4 
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Table 8.   Spacecraft Cubic Bias Compensation Values in °C vs. °/sec 

Sensor 
Bias 

Variable Value 
(V) 

Standard Error 
(V) 

Residual 
Sum of 
Squares 

Adj. R-
Square 

X B 0.10358 1.15748E-4 

0.08397 0.99542 
m1 -0.00276 4.75537E-6 
m2 1.01728E-5 3.06867E-7 
m3 -1.91933E-7 4.50312E-9 

Y 
 

B 0.04631 1.16592E-4 

0.08545 0.97027 
m1 -0.00125 4.82254E-6 
m2 1.5161E-5 3.11857E-7 
m3 -1.51168E-7 4.42731E-9 

Z B 0.09842 1.22537E-4 

0.09314 0.9719 
m1 -0.00128 4.89401E-6 
m2 2.50795E-5 3.05081E-7 
m3 -2.99741E-7 4.62209E-9 

 
 
 
 

 

Figure 35.   Comparison of Ground and Spacecraft Polynomials 
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c. Polynomial Testing and Bias drift 

To test the compensation polynomials, the MEMS unit was again placed 

in the TVAC for a period of ~5 hours under vacuum at room temperature.  This was a 

simple test to collect data and compare the results once the polynomials were applied.  It 

was also an interest to observe how the rates drift in vacuum over a longer period.  For 

comparison, a short 20-minute sample under ambient pressure was taken before (7.5E+2 

Torr) and after (7.6E+2 Torr) the test.  In accordance with the Vacuum degree test section 

results, the vacuum level during this test was kept under 1E-4 Torr to minimize bias 

offsets related to pressure changes; the chamber pressure was roughly at 4.6E-5 Torr at 

the start of the test to 1.2E-5 after the test and right before the pumps were turned off.  

Figure 36 is a combined plot of data before, during, and after the vacuum test, showing 

discontinuities in the plot where the vacuum pumps were on.  In (a) the uncompensated 

rates are shown and the sensor outputs are seen to drift with internal temperature and 

small changes to the ambient temperature.  In (b), the ground test polynomials were 

applied to the data.  As expected, the curves outside of the vacuum region show reduced 

biases to nearly zero.  Moreover, the temperature drift in the vacuum data is corrected but 

is still shifted due to the pressure difference.  In (c), the spacecraft polynomials were 

applied to the data set and the data within the vacuum lines are brought down to nearly 

zero.   

Initial transients, as seen in (b), last about 5 minutes in ambient and bias 

errors of up to 0.02°/sec, 0.014°/sec, and 0.03°/sec were observed for the X, Y, and Z 

sensors.  Similarly, transients in vacuum were observed and lasted at least an hour, which 

is significantly longer than the ambient behavior.  During this vacuum transition period, 

the X, Y, and Z sensor bias errors of ~0.02°/sec, ~0.015°/sec, and ~0.016°/sec were 

observed, which are comparable to the ambient values.  From these initial results and the 

5% requirement, one can estimate that the resolution limits in vacuum would be about 

0.4°/sec, 0.3°/sec, and 0.3°/sec.  The rate tests in the following section would be able to 

provide a slightly more accurate estimate since the earth rate components can be removed 

by positioning the HAAS table at the appropriate angles.  
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Once the initial transients were stable in vacuum, the averaged 

temperature and pressure compensated bias errors are: X = 0.004 °/sec, Y = -0.004 °/sec, 

and Z = -0.002 °/sec.  These errors drift with time and will be discussed in the Allan 

variance section, G.3. 

 
(a) 

 
(b) 

 
(c) 

Figure 36.    (a) Uncompensated Rates, (b) Temperature Compensated Rates, and  
(c) Temperature and Pressure Compensated Rates 
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E. RATE TRANSFER TESTING 

Rate output verification testing was conducted to compare the angular rates 

measured by the gyroscope with that given by a rate table.10  The goals of this test series 

are (1) to determine the gyroscope output error with rotation rate and compare the results 

to the static test estimates, and (2) to determine bcons, and to extract the components of 

matrix M.  These angular rate tests were performed while the test axis is orthogonal to the 

earth’s rotational axis.  In addition, the data were thermally compensated using the 

ground polynomials derived in Section C.  Hence, the results are without (or reduced due 

to setup misalignment) the component of the Earth’s rotation and temperature variation. 

1. Setup 

The HAAS rate table was positioned so that the main axis of the body is 

perpendicular to the earth’s rotational axis.  Then, the turntable was leveled and the 

MEMS and ACS were mounted on the plate using the bracket shown in the Figure 37.  

The MEMS subsystem was oriented so that the sense axis of the sensor under test was 

parallel with the HAAS rotational axis.  To cancel the earth’s rotational effects, the 

turntable was tilted at -36.4° (accounts for the geocentric latitude of Monterey, CA).  The 

test setup is shown in Figures 37 and 38.  

The HAAS controller was programmed to apply a constant angular rate for a set 

period of time and then stepped according to the designed test sequence.  Two types of 

test schedules were used: 

(a)  For rates > 0.01°/s, the cycle step dwell time was set to 60 seconds and the 

table was rotated four times, alternating in the + and − rotational direction to prevent over 

twisting the wiring harness.  A recording of the zero rate or bias before and after the test 

cycle was included to serve as a reference.  This test sequence is shown in Figure 39.  

                                                 
10 Typically, (as described in [15]) multi-position tests are conducted to evaluate the drift, as well as 

the run-to-run, and in-run drift of a gyroscope.  A Graseby table is commonly used to accurately position 
the gyroscope in a series of fixed orientation with respect to geographic axes and the local gravity vector of 
the Earth. On the other hand, rate transfer tests are used to investigate the characteristics of the scale factor.  
Rate tables may be enclosed in a controlled environmental chamber for thermal evaluations.  The methods 
are slightly different in this thesis due to the type of equipment available. 
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(b) For rates < 0.01°/s, the + and - rotation outputs became hard to distinguish 

from the zero rate bias.  To ease the data analysis process, the + and − halves as well as 

the stationary output for rate tests < 0.01°/s were recorded separately.  Moreover, the step 

duration was lengthened to 260 seconds.  

To simulate the orbit scenario where the temperature compensation errors would 

be highest, the tests were conducted while the MEMS sensors were in its stabilization 

period.  The rate tests (most) were started under 300 seconds after the ACS electronics 

was turned on.  

 

Figure 37.   Rotary Table Test Setup 

 

Figure 38.   HAAS Test Setup 
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2. Results 

A typical test output is shown by Figure 39.    
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Figure 39.   Example Output of Rate Testing (Z Sensor) 

Due to potential rate table timing issues11, the first and last data points of each 

step were not included in the analysis.  Data from the rate transfer tests were analyzed by 

comparing the gyroscope output with the corresponding rate of the HAAS table.  The 

deviations from the programmed table drive speed are listed in Tables 9, 10, and 1112 in 

terms of the percent error of the average output.  The error results are provided in two 

ways—using direct rate measurements (no ref) and using a reference (minus ref).  The 

cells in orange are about the 5% error requirement and the cells in red are those that do 

                                                 
11 HAAS Manual [36] pg 37 describes HAAS delay between steps.  Timing issues also include delays 

from the manual start of HAAS controller, and manual start of python software. 

12 Tests were also conducted at earth rate but not presented in these tables, since the resolution 
degrades below the requirement much greater than the earth rate. 

Reference (ref) 

Sample Set 1 (+) Sample Set 2 (+) 

Sample Set 1 (-) Sample Set 2 (-) 
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not meet this requirement.  Note that the use of a reference was not in the original test 

plan and was a mere product of data analysis.  Consequently, the averages for these 

references were taken from available data that were not uniform in sample size, unlike 

the actual dynamic measurements.  Nevertheless, the reference data used in this analysis 

served as an initial estimate to gauge the potential of the sensors for use at lower rates.   

The estimates show that if the rate sensor measurements are used directly, the 

performance requirements are met for most of the B-dot rates, which are >0.1 °/sec.  If, 

however, a reference can be established or the bias estimated, then the resolution could 

improve to <0.1 °/sec, with the best or most reliable case showing at about 0.04 °/sec.  By 

using this “reference,” the output errors are provided with reduced13 initial bias, 

including the effects of alignment errors from the setup (not internal misalignment) and 

the residual run-to-run bias variation.  If rate integration is later pursued for this 

experiment, the reference that was used in this test would represent a known initial 

attitude and the sensors would be used to measure the rate of change in attitude from this 

initial attitude.  The use of gyroscope for attitude control is usually calibrated against an 

external reference or a known initial attitude; periodic calibration must be performed due 

to bias drift [28], [29].   

In these tests, we also wanted to address the initial transients, which is 

approximately 5 minutes in ambient and up to 1.5 hours in vacuum.  Recall that in the 

ambient startup profile on a tabletop position, the observed bias errors after thermal 

compensation were as much as 0.024°/sec (X), 0.017°/sec (Y), and 0.019°/sec (Z) during 

the 300-second stabilization period.  The initial resolution limit due to these biases using 

the 5% requirement would then be 0.48°/sec, 0.34°/sec, and 0.38°/sec for the X, Y, and Z 

sensors.  Due to the more refined setup in the rate table test, slightly better resolution 

(>0.01°/sec) for all three sensors were obtained, as discussed above.  In support of the 

static test results, the results in Tables 9, 10, and 11 are marked by an asterisk (*) where 

the rate tests started after the MEMS have been on for at least 300 seconds.  As can be 

seen, these asterisk-marked tests do not appear to have a significant impact on the rate 

                                                 
13It is emphasized that the values in this analysis are averages, thus even with the use of reference, the 

bias cannot be completely removed. 
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resolution or the error trend.  From these ambient test results, one can derive that the bias 

compensated sensors would perform as well in vacuum given that the startup profile tests 

showed similar resolution estimates of 0.4°/sec, 0.3°/sec, and 0.3°/sec during the 

observed 1.5 hr stabilization.  Although the initial transients are longer in vacuum, it is 

reasonable to expect that we need not wait 1.5 hrs before the sensors can be used, and 

that most of the larger detumbling rates can be measured accurately while the rates are 

still in transient.  Further testing would be required to validate this.  In addition to the 

tables, the absolute errors are plotted in Figure 40 and the relative error results using 

references are plotted in Figure 41.  Again, the absolute errors are estimates of what can 

be currently achieved by the ACS setup using “raw” sensor data and using the in-run bias 

as a minimum compensation method.  On the other hand, the relative error results using 

the references (also compensated using the in-run bias) represent possible improvement 

with further work.  It should be noted that the true resolution of the system would 

ultimately be defined by the sensor fusion algorithm.  
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Table 9.   Z Sensor Output Error in Percent 

Test 
Rate 

Z 

Sample Set 1 Sample Set 2 
% Error 

(minus ref) 
% Error 
(no ref) 

STDV in 
°/sec 

(no ref) 

% Error 
(minus ref) 

% Error 
(no ref) 

STDV in 
°/sec 

(no ref) 
5 1.3 1.1 0.001 1.3 1.0 0.001 

-5 0.5 0.7 0.004 0.6 0.8 0.004 
4 0.3 0.1 0.004 0.3 0.1 0.003 

-4 0.3 0.5 0.005 0.3 0.5 0.005 
4.5 0.2 0.2 0.005 0.2 0.2 0.004 

-4.5 0.5 0.5 0.003 0.5 0.6 0.004 
3 0.4 0.1 0.004 0.5 0.1 0.004 

-3 0.4 0.7 0.005 0.4 0.7 0.004 
3.5 0.4 0.1 0.003 0.4 0.2 0.004 

-3.5 0.4 0.6 0.004 0.4 0.6 0.004 
2 0.4 -0.1 0.004 0.4 0.0 0.004 

-2 0.3 0.7 0.004 0.3 0.7 0.003 
2.5 0.4 0.1 0.004 0.3 0.0 0.004 

-2.5 0.5 0.8 0.004 0.4 0.7 0.004 
1.5 0.5 -0.1 0.005 0.6 0.1 0.004 

-1.5 0.4 1.0 0.004 0.4 0.9 0.004 
1 0.5 -0.2 0.004 0.6 -0.1 0.004 

-1 0.6 1.3 0.005 0.6 1.3 0.004 
0.5 0.6 -1.0 0.005 0.5 -1.0 0.004 

-0.5 0.6 2.1 0.004 0.5 2.1 0.004 
0.4 0.6 -1.1 0.004 -0.2 -2.0 0.004 

-0.4 0.4 2.1 0.004 0.7 2.4 0.004 
0.45 0.3 -1.0 0.003 0.4 -0.9 0.004 

-0.45 0.4 1.7 0.004 0.6 1.8 0.005 
0.3 0.5 -2.2 0.003 0.6 -2.1 0.003 

-0.3 0.2 2.9 0.004 -0.2 2.6 0.004 
0.35 0.6 -1.6 0.004 1.0 -1.3 0.005 

-0.35 0.6 2.8 0.005 0.4 2.7 0.004 
0.2 1.3 -3.2 0.004 1.2 -3.3 0.004 

-0.2 0.0 4.5 0.004 0.3 4.8 0.005 
0.25 0.4 -2.8 0.005 1.5 -1.7 0.005 

-0.25 -0.2 2.9 0.004 -0.2 2.9 0.004 
0.1 3.2 -5.2 0.003 2.4 -6.0 0.004 

-0.1 -0.1 8.3 0.005 -0.1 8.3 0.005 
0.15 0.3 -3.9 0.004 1.2 -3.1 0.005 

-0.15 1.5 5.7 0.004 1.6 5.8 0.003 
0.09 0.6 -7.6 0.004 0.9 -7.3 0.004 

-0.09 -3.1 5.0 0.004 0.7 8.9 0.004 
0.08 -2.0 -8.7 0.004 -0.9 -7.7 0.003 

-0.08 2.2 8.9 0.004 1.8 8.5 0.004 
0.07 4.0 -14.4 0.004 4.7 -13.8 0.004 

-0.07 -3.8 14.7 0.005 -5.9 12.5 0.004 
0.06 0.2 -14.0 0.004 1.3 -12.9 0.004 

-0.06 0.4 14.6 0.004 0.0 14.2 0.004 
0.05 -3.2 -20.6 0.004 -0.4 -17.9 0.004 

-0.05 0.9 18.4 0.004 -1.4 16.0 0.004 
0.04 5.6 -19.6 0.004 6.5 -18.8 0.005 
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Test 
Rate 

Z 

Sample Set 1 Sample Set 2 
% Error 

(minus ref) 
% Error 
(no ref) 

STDV in 
°/sec 

(no ref) 

% Error 
(minus ref) 

% Error 
(no ref) 

STDV in 
°/sec 

(no ref) 
-0.04 -2.6 22.7 0.004 -6.3 19.0 0.005 
0.03 -1.1 -19.6 0.003 -4.1 -22.6 0.004 

-0.03 4.3 22.8 0.004 5.6 24.1 0.004 
0.02 -5.4 -39.9 0.004 3.1 -31.4 0.004 

-0.02 13.2 47.7 0.003 5.5 40.1 0.003 
0.01 19.4 -48.7 0.004 2.8 -65.3 0.004 

-0.01 -2.5 65.6 0.005 -1.5 66.6 0.005 
0.009 16.4 -57.8 0.005 -- -- -- 

-0.009 -6.1 54.1 0.004 -- -- -- 
0.008* -10.5 -78.9 0.004 -- -- -- 

-0.008* 6.1 69.7 0.004 -- -- -- 
0.007* 5.4 -81.5 0.004 -- -- -- 

-0.007* 5.7 93.8 0.004 -- -- -- 
0.006* -5.7 -92.7 0.004 -- -- -- 

-0.006* 3.6 105.2 0.004 -- -- -- 

 

Table 10.   X Sensor Output Error in Percent 

Test 
Rate 

X 

Sample Set 1 Sample Set 2 
% Error 

(minus ref) 
% Error 
(no ref) 

STDV in 
°/sec 

(no ref) 

% Error 
(minus ref) 

% Error 
(no ref) 

STDV in 
°/sec 

(no ref) 
5* 0.4 0.2 0.005 0.3 0.1 0.005 

-5* 0.3 0.5 0.002 0.3 0.5 0.001 
4 -0.1 -0.3 0.006 0.0 -0.3 0.004 

-4 -0.1 0.2 0.004 0.0 0.2 0.005 
4.5 -0.2 -0.4 0.005 -0.2 -0.4 0.005 

-4.5 -0.2 0.0 0.005 -0.2 0.0 0.005 
3 0.1 -0.3 0.003 0.0 -0.3 0.005 

-3 -0.2 0.2 0.004 -0.2 0.2 0.006 
3.5 -0.1 -0.3 0.005 0.0 -0.3 0.005 

-3.5 -0.1 0.2 0.005 -0.1 0.2 0.005 
2 0.2 -0.4 0.006 3.6 3.0 0.348 

-2 -0.3 0.3 0.004 -0.4 0.2 0.005 
2.5 0.0 -0.4 0.004 -0.1 -0.5 0.004 

-2.5 -0.1 0.2 0.004 -0.1 0.3 0.005 
1.5 0.0 -0.5 0.003 0.0 -0.5 0.004 

-1.5 -0.2 0.4 0.006 -0.1 0.5 0.004 
1 0.1 -0.9 0.005 0.2 -0.7 0.004 

-1 -0.3 0.7 0.004 -0.1 0.8 0.005 
0.5 -0.3 -1.9 0.005 0.0 -1.6 0.003 

-0.5 -0.1 1.5 0.004 0.1 1.7 0.005 
0.4* -0.7 -2.1 0.003 -0.7 -2.1 0.004 

-0.4* 0.5 1.9 0.005 0.5 1.9 0.004 
0.3 -0.4 -3.3 0.004 -0.2 -3.1 0.005 

-0.3 0.1 3.0 0.004 -1.1 1.8 0.005 
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Test 
Rate 

X 

Sample Set 1 Sample Set 2 
% Error 

(minus ref) 
% Error 
(no ref) 

STDV in 
°/sec 

(no ref) 

% Error 
(minus ref) 

% Error 
(no ref) 

STDV in 
°/sec 

(no ref) 
0.2 -0.3 -4.8 0.004 0.0 -4.4 0.004 

-0.2 -1.1 3.4 0.004 -0.1 4.4 0.005 
0.1* 0.6 -7.8 0.004 0.2 -8.3 0.004 

-0.1* -0.2 8.3 0.004 -1.6 6.8 0.004 
0.09 -0.8 -9.8 0.004 -1.5 -10.5 0.004 

-0.09 0.0 9.1 0.004 -0.7 8.3 0.004 
0.08 0.0 -9.0 0.004 1.4 -7.6 0.004 

-0.08 -4.2 4.7 0.003 -1.6 7.3 0.003 
0.07 0.6 -11.9 0.004 0.8 -11.7 0.004 

-0.07 -2.2 10.3 0.005 -4.3 8.2 0.004 
0.06* -1.3 -13.9 0.003 0.0 -12.6 0.004 

-0.06* -0.9 11.7 0.005 -1.6 11.0 0.004 
0.05* 2.1 -20.0 0.003 4.3 -17.8 0.004 

-0.05* -5.9 16.2 0.003 -8.0 14.1 0.003 
0.04 0.1 -21.8 0.005 -0.7 -22.7 0.004 

-0.04 -5.5 16.4 0.004 0.2 22.1 0.004 
0.03* 6.0 -26.5 0.004 4.8 -27.8 0.005 

-0.03* -8.0 24.6 0.004 -12.0 20.6 0.003 
0.02 9.2 -34.8 0.004 5.9 -38.0 0.003 

-0.02 -10.2 33.7 0.004 -8.1 35.8 0.003 
0.01 18.2 -66.7 0.004 13.6 -71.3 0.004 

-0.01 -30.7 54.2 0.004 -25.2 59.7 0.003 
0.009 30.9 -77.2 0.004 19.7 -88.5 0.004 

-0.009 -34.5 73.6 0.004 -29.2 78.9 0.004 
0.008 22.0 -106.8 0.003 -- -- 0.005 

-0.008 -21.1 88.3 0.004 -- -- 0.001 
0.007 -- -92.7 0.004 -- -- 0.004 

-0.007 -- 98.2 0.004 -- -- 0.005 
0.006 33.2 -120.0 0.004 -- -- 0.005 

-0.006 -3.0 130.1 0.004 -- -- 0.005 

 

Table 11.   Y Sensor Output Error in Percent 

Test 
Rate 

Y 

Sample Set 1 Sample Set 2 
% Error 

(minus ref) 
% Error 
(no ref) 

STDV in 
°/sec 

(no ref) 

% Error 
(minus ref) 

% Error 
(no ref) 

STDV in 
°/sec 

(no ref) 
5 0.1 0.2 0.001 0.1 0.2 0.001 

-5 -0.1 -0.2 0.001 -0.1 -0.2 0.001 
4 -0.5 -0.4 0.004 -0.5 -0.4 0.004 

-4 -0.6 -0.7 0.003 -0.6 -0.8 0.005 
4.5 -0.5 -0.4 0.005 -0.5 -0.4 0.005 

-4.5 -0.6 -0.7 0.005 -0.6 -0.7 0.005 
3 -0.6 -0.3 0.004 -0.5 -0.3 0.004 

-3 -0.5 -0.7 0.004 -0.6 -0.8 0.004 
3.5 -0.5 -0.3 0.004 -0.6 -0.4 0.004 
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Test 
Rate 

Y 

Sample Set 1 Sample Set 2 
% Error 

(minus ref) 
% Error 
(no ref) 

STDV in 
°/sec 

(no ref) 

% Error 
(minus ref) 

% Error 
(no ref) 

STDV in 
°/sec 

(no ref) 
-3.5 -0.6 -0.8 0.006 -0.5 -0.7 0.005 

2 -0.4 -0.1 0.005 -0.4 -0.1 0.005 
-2 -0.6 -0.9 0.006 -0.7 -1.0 0.003 

2.5 -0.4 -0.2 0.005 -0.5 -0.3 0.004 
-2.5 -0.6 -0.8 0.004 -0.6 -0.8 0.005 
1.5 -0.3 0.1 0.004 -0.3 0.1 0.003 

-1.5 -0.6 -1.0 0.004 -0.7 -1.1 0.004 
1 -0.2 0.4 0.004 -0.2 0.4 0.005 

-1 -0.7 -1.3 0.004 -0.6 -1.2 0.005 
0.5 -0.4 0.9 0.004 -0.1 1.2 0.005 

-0.5 -0.9 -2.2 0.004 -0.8 -2.1 0.004 
0.4 0.5 1.7 0.004 0.2 1.3 0.003 

-0.4 -0.9 -2.0 0.004 -1.3 -2.5 0.004 
0.3 0.5 2.5 0.004 -0.1 1.9 0.004 

-0.3 -0.6 -2.6 0.004 -1.2 -3.2 0.005 
0.2 1.3 4.3 0.004 0.9 3.9 0.004 

-0.2 -1.0 -4.0 0.006 -1.2 -4.3 0.004 
0.1 1.4 8.0 0.005 1.0 7.6 0.004 

-0.1 -2.8 -9.4 0.005 -2.8 -9.4 0.005 
0.09 1.9 8.7 0.005 3.9 10.7 0.004 

-0.09 -1.3 -8.2 0.004 -3.7 -10.6 0.003 
0.08 2.1 9.6 0.004 2.1 9.6 0.003 

-0.08 -1.6 -9.1 0.004 -5.1 -12.6 0.005 
0.07 8.6 13.6 0.004 6.1 11.1 0.004 

-0.07 -5.4 -10.4 0.004 -6.4 -11.4 0.004 
0.06 0.6 11.2 0.005 2.2 12.8 0.005 

-0.06 -3.8 -14.4 0.004 -2.0 -12.6 0.004 
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Figure 40.   Absolute Errors (no reference) 
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Figure 41.   Sensor Relative Output Error in Percent (with reference)
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a. Bcons, Scale Factor and Nonorthogonality 

The input-output data was plotted and the sample sets were fitted using a 

line.  The input-output relationship is given by [15]: 

 (17)

 

where the actual scale factor  is the slope of fitted line while the y-intercept is the 

estimate of the fixed portion of the bias or bcons.  This is also shown in Figure 42. 

 

 

Figure 42.   Bias and Scale Factor from the Input-Output Plot (Z) 

The misalignment/nonorthogonality is shown by Figure 43.  As seen in 

this example, small signals are detected along the orthogonal X and Y sensors during a Z 

axis test.  Due to the position of the X and Y sensors in this particular test, these 
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misalignment errors include a component of the earth’s rotation; although the 

misalignment errors are clearly more significant than the earth rate component.  The 

output errors are summarized next in Figure 44.    

 

Figure 43.   Example of misalignment errors for the X & Y sensors during a Z axis test. 
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(a) 

 
(b) 

 
(c) 

Figure 44.   X, Y and Z Misalignment Errors 
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The results for: 

 , , ,  and     are 

given below for direct measurements (no ref) and for data with reference (minus ref).  

The Origin reports can be found in Appendices E–J.  The results below have been 

converted to °/sec for bcons and % for M. 
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0.042 0.102 1.298
0.156 0.4 0.128
0.2 0.139 0.506
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The “no ref” set of elements are suitable for the B-dot mode.  On the other 

hand, the “minus ref” elements are provided here for the potential rate integration mode.  

The bminus refs are the residual biases after using the references. 

  



 

 79

F. RANDOM VIBRATION TESTING 

Vibration tests were performed in each of the three orthogonal axes to screen for 

design and workmanship defects.  Figure 45 shows the test flow.   

 

Figure 45.   MEMS Random Vibration Test Flow 

A low-level sine sweep test is performed prior to and after each test to measure 

the natural frequencies of the component in its test configuration and to verify the fixture 

dynamics.  The test input is limited to the band from 20 to 1000 Hz, at 0.25 g and a 

sweep rate of 4 oct/min [9].  The sine sweep measurement is recorded and plotted in 

acceleration (g) vs. frequency (Hz).   

The random vibration test is performed according to the test levels for component 

minimum workmanship as shown in Table 1.  A plot showing these test levels are also 

shown in Figure 46.  These levels are applicable for components 45.4 kg or less.  The 

MEMS sensor suite weighs 874 g. 

Functional tests on all three orthogonal axes of the MEMS are performed before 

acceptance testing and following each vibration test sequence to verify that the hardware 

is still fully operational.  Functional tests are done using the same procedure as Section E, 
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Rate Transfer Test.  An analysis is done to determine if there are any changes to the 

performance of the subsystem after random vibration testing.   

  

Figure 46.   Component Minimum Workmanship Random Vibration Test Levels  

1. Setup 

In preparation for the vibration test, all screws in MEMS assembly were torqued 

according to estimated installation torque calculations.  A pre-vibe functional test was 

conducted using the HAAS rate table using the same setup and procedures in Section E.  

Data was collected at 5°/sec, 0.5 °/sec, and 0.05°/sec on all three axes.  The MEMS unit 

was then moved to the shaker table area.   

The vibration test setup consists of a Ling 612VH electrodynamic shaker and 

amplifier, a computer workstation, which controls the shaker using the M+P Vibrunner 

software suite, a data acquisition system, a slip table, a power conditioner, a mounting 

fixture specifically designed for the MEMS, and four accelerometers.  A closed-loop 

vibration control was implemented to ensure the acceleration input to the test article met 

the acceleration spectral density test specification.  Before mounting the MEMS on the 

shaker table, an initial test using just the mounting fixture and two accelerometers was 

performed to verify the controller settings and to check the signals from the 

accelerometers.  After the pretest, the MEMS unit was bolted on to the mounting fixture.  

One accelerometer was attached to the base plate and another on top of the enclosure cap.  

A video camera was also positioned to record the test.  The setup and accelerometer 

placement are shown in Figure 47.   

Vertical tests were first conducted for the Z sensor.  Then, the shaker was rotated 

and attached to a horizontal slip table for the horizontal tests of the Y and X directions.  

45.4 kg or less 
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After each vibe test, the setup was inspected to verify that the accelerometers were still 

adhered well in place and that all screws were still tight.  In addition, post-vibe functional 

tests were conducted on all three axes, as mentioned before. 

 

Figure 47.   Random Vibe Test Setup 

2. Results 

a. Accelerometer Measurements 

For the Z-axis test, the sine sweep shows the first mode at ~6.75 kHz 

likely due to the housing given the location of the accelerometer.  The resonance at this 

frequency is apparent in the random vibration, as well.  The Z results are shown in 

Figures 48 and 49. 
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Figure 48.   Sine Sweep (Pre Random Vibe) along the Z-Axis  

 

Figure 49.   Random Vibration along the Z-Axis 
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The Y-axis test showed several peaks in the sine sweep test, with the 

highest seen at just under 700 Hz.  However, there was no large spike observed at this 

frequency during the random vibration test.  Instead, the Y acceleration shifted up at 1.2 

kHz until 2 kHz.  The post sweep displayed the same behavior as the pre-random vibe 

sine sweep.  The Y results are shown in Figures 50, 51, and 52. 

 

Figure 50.   Low-level Sine Sweep (Pre-Random vibe) along the Y-Axis 
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Figure 51.   Random Vibration along the Y-Axis 

 

Figure 52.   Low-level Sine Sweep (Post Random Vibe) along the Y-Axis 
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Finally, the results of the X-axis test are shown on Figures 53, 54, and 55.  

The sine sweep of X behaved similarly to the Y sine sweep, with the first peak showing 

at around 80 Hz.  During the random vibration test, the highest acceleration was seen at 

~1.3 kHz.  A few more peaks showed after the largest spike and then the acceleration 

went back down to the input levels by 2 kHz.  The post-random vibe sine sweep 

exhibited the same modes as the pre-random vibe sweep, indicating that there were no 

changes to the unit after the random vibe test. 

 

Figure 53.   Low-Level Sine Sweep (Pre Random Vibe) along the X-Axis 
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Figure 54.   Random Vibration along the X-Axis 

 

Figure 55.   Low-Level Sine Sweep (Post Random Vibe) along the X-Axis 
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Overall, the higher frequency accelerations can be attributed to the 

dynamics of the MEMS unit.  High frequency dynamics may also be contributions from 

the test fixture [30].  

b. Visual Inspection 

During the Z-axis test, two screws came loose on the MEMS housing.  It 

was determined that the initially prescribed torque values were low and that a possible 

error in applying the torque values resulted from confusion of different screw sizes.  The 

installation torque is calculated based on the target pre-load, which is generally set to at 

least 80% of the yield for the screw material.  All torque values are being re-evaluated for 

higher preloads and will likely be increased to levels close to the 80% of yield point for 

the screw material [31].  At the time of the tests, there was no secondary backout 

prevention used for mounting the MEMS assembly to the shaker adapter plate.  Safety 

wires were used for the connectors.  There were no other failed parts found by visual 

inspection 

c. Functional Test Results 

The results of all functional tests performed on the MEMS subsystem are 

plotted in Figures 56, 57, and 58.  The rate tests performed ~3 months earlier are also 

included in the graphs for comparison.  Note that these results use the initial bias as 

reference to distinguish from the no motion signal; also, these are post-thermal 

compensation data.  The “minus ref” values were used for this particular analysis to 

determine the variability using this referencing scheme, in addition to determining the 

vibration sensitivity of the sensors.  The plots show that there are no significant changes 

to the rate output of all three sensors that could be attributed to the vibrations that they 

were subjected to during the shake test.  At 5°/sec and 0.5°/sec, all three sensors met the 

performance requirements and are all within ±5% output error.  At 0.05°/sec, the X and Y 

both exceeded the requirement 3 times out of the 5 tests.  However, this inconsistency is 

not unexpected at this low rate.  On the other hand, the Z sensor met the performance 

requirements in all of the tests. 
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Figure 56.   Functional Tests of Z Sensor 

 

Figure 57.   Functional Tests of Y Sensor 
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Figure 58.   Functional Tests of X Sensor 

The actual scale factor  and the fixed bias bcons (no reference) are shown 

in Table 12 for all of the tests.  Since the functional tests for the vibration tests were 

cycled only once, the sample sets for the rate tests were separated14 for the purpose of 

comparison.  The elements were extracted from the direct measurement data to obtain the 

worst-case values.   

                                                 
14 Sample sets 1 and 2 of rate test results were concatenated. 
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Table 12.   Comparison of  and bcons 

Test X Y Z 
Category Sample Sf 

 
mV/(°/

sec) 

Sf 

STDV 
mV/(°/se

c) 

Bias 
 

°/sec 

Bias 
STDV 
°/sec 

Sf 

 
mV/(°/

sec) 

Sf 

STDV 
mV/(°/sec

) 

Bias 
 

°/sec 

Bias 
STDV 
°/sec 

Sf 

 
mV/(°/sec

) 

Sf 

STDV 
mV/(°/se

c) 

Bias 
 

°/sec 

Bias 
STDV 
°/sec 

Rate Test 
 

Set 1 499.95 1.48E-01 0.008 2.80E-4 
 

501.99 2.10E-01 -0.008 4.87E-4 497.52 1.95E-01 0.007 3.49E-4 

Set 2 499.62 3.83E-01 0.007 7.68E-4 502.01 2.14E-01 -0.008 4.96E-4 497.43 2.01E-01 0.007 3.82E-4 
Set 1 (6 
points 
only)15 

498.29 1.56E-01 0.009 4.54E-4 500.01 2.83E-01 -0.009 1.00E-3 495.49 6.96E-01 0.003 2.02E-3 

Vibe Test Pre 
Vibe 

499.14 1.55E-01 0.012 4.49E-4 500.11 3.54E-01 -0.009 1.03E-3 495.9 6.40E-01 -0.002 1.86E-3 

Post 
Vibe Z 

499.57 1.50E-01 0.012 4.36E-4 499.97 4.77E-01 -0.002 1.38E-3 494.97 9.96E-01 0.013 2.89E-3 

Post 
Vibe X 

499.07 1.20E-01 0.012 3.47E-4 499.96 2.52E-01 0.000 7.32E-4 497.33 3.85E-01 0.019 1.37E-4 

Post 
Vibe Y 

498.57 3.72E-01 0.013 1.08E-3 499.94 3.28E-01 -0.001 9.51E-4 495.33 9.18E-01 0.011 2.66E-3 

Manuf. 
Test Data 

n/a 500.15
2 

 0.048  502.14  0.068  497.92  0.131  

Manuf. 
Spec 

 500±5  ±0.40  500±5  ±0.40  500±5  ±0.40  

                                                 
15 Included here to show effects of data reduction. 
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G. ADDITIONAL TESTS AND CHARACTERIZATION 

1. ACS Data Save Interval  

During data analysis, an error in the data save interval n (described in Section III-

D-2) was observed.  For most of the tests, a save interval of 2 was used.  However, it was 

noticed that the interval could from time to time skip.  For example, using the ACSID 

238 data collected during recirculator and cold plate tests where a save interval of 2 was 

used, an interval in the elapsed time of 3 occurred 17 instances, 5 occurred 7 instances, 

and  6 in 2 instances.  In another data set, ACSID 247, a save interval of 3 occurred 3 

times.  In ACSID 206, an interval of 3 occurred 150 times.  This may not be too much of 

an issue for test analysis, since the data points are averaged.  However, this affects actual 

space operations, since the current ACS setup requires MEMS data every two seconds.  

This observation is noted here for NPS SSAG use.   

2. Variability within Tests 

Recall that the sampling period of the current ACS setup is 200 points/sec.  In the 

tests conducted above, one data point represents the mean of this 200 points/sec.  Later 

into the tests, the software was updated so that the variance of the 200 points was also 

saved into the database.  Short tests, as shown in Figure 59, were conducted to compare 

the variance within a test and between tests.  The results show that the variance is greater 

within a test, shown in Figures 60 and 61, than between the ten short duration tests, 

shown in Figure 62.     

In [2], sampling re-testing was recommended to possibly lower the sampling rate 

of 200 Hz and free up bandwidth and resources for other ACS tasks.  As in [32] and [33], 

the sampling rate needs to be at least twice the bandwidth of the QRS11, which is ~100 

Hz [12] to satisfy the Nyquist criterion.  In [32], a sampling rate of three to five times the 

bandwidth was considered the reliable frequency.  Thus, the 200 Hz is the minimum 

sampling frequency.  It is not suggested to lower the sampling rate due to the Nyquist 

criterion and to the large variance within a test.  The ACS computing has been alleviated 

by transferring some of the processes to the CD&H.  
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Figure 59.   Short Duration Tests (1-10) 

 

Figure 60.   Variance of the 200 point averages in Test 1 
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Figure 61.   Variance of the 200 point averages in Test 2.  The first few points right after turn 
on are typically very large variances and will not be used by the ACS. 

 

 

Figure 62.   Variance between tests 
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3. Drift Characterization Using Allan Variance 

The purpose of this section is to present the initial characterization results of 

random drift rate using the Allan variance technique.   

Allan variance is a time domain analysis technique used to determine the 

character of the underlying random processes that give rise to the data noise.  It is defined 

as: 

1
2

Ω Ω  (18)

where T is the cluster time, which is equal to nto  and n = 1,2,3,…N,  to is the sample time; 

Ω  is the cluster average of the instantaneous rate output Ω  and, and Ω  is 

the subsequent cluster average.  The cluster average is defined as: 

Ω
1

Ω  (19)

where Ω  starts from kth data point and contains n data points.  Moreover, the 

subsequent cluster average is given by: 

Ω
1
T

Ω t  (20)

where t t . 

The Allan variance method provides a way of estimating the different noise 

components that exist in the data.  The noise components in typical gyroscope models 

include: quantization noise, angle random walk (ARW), correlated noise (Markov), 

sinusoidal error, bias instability, rate random walk and rate ramp.  Static data is fed into 

the above equations and the result is typically plotted as the square root of the Allan 

variance (Allan deviation) versus T on a log-log plot.  Any number of noise components 

can be present in the data.  A typical plot showing different variance components are 

shown in Figure 63.    For this initial modeling, the main interest is to estimate ARW, 

bias instability, and rate random walk, which were defined in Section II-B and named in 

[20] as three usual noise terms of random drift. 
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Figure 63.   Sample Plot of Allan Variance Analysis Results Showing Different Noise 
Components (From [33]).  

As seen in the figure above, the components are identified by the slope of   

segment16.  The details of these components and their derivation are described in [32] and 

[33].  Briefly, by relating Equation (18) to the power spectral density (PSD)17,  can 

be reduced to the following equations:  

1.  For ARW, Equation (18)  simplifies to, 

√
 (21)

where N is the angle random walk coefficient.  By reading the -1/2 slope line, the value 

of  can be obtained at T = 1 hour. 

2.  For bias instability, the Allan deviation reaches a plateau for T much longer than the 

inverse of the cut off frequency.  Bias instability can be obtained from: 

                                                 
16 From [27], gradual transitions would exist between the slopes with real data. 

17  PSD is the most commonly used representation of spectral decomposition of a time series.  It is a 
positive real function of a frequency variable associated with a stationary stochastic process, or a 
deterministic function of time, which has dimensions of power per Hz, or energy per Hz [37]. 
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 0.664B (22)

where B is the bias instability coefficient.  From this relationship, the slope is zero and B 

can be solved from where the horizontal line crosses  . 

3.  For rate ramp, the Allan deviation is given by, 

√2
 (23)

where R is the rate ramp coefficient.  The value of R can be read from where the +1 slope 

line intersects T = √2 hour. 

a. Results 

Using data collected in the vacuum tests, the Allan standard deviation was 

plotted using the MATLAB source code from [34].  The data sets selected for this 

characterization are two-hours long.  Additionally, these sample sets are temperature and 

pressure compensated rates taken after the initial transients have settled.  The results are 

shown in Figure 64. 
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Figure 64.   Allan Deviation of 2 hour data 

The plots show that the dominant noise term for shorter cluster time is 

ARW, while the higher cluster time indicates (for X and Y) that rate ramp is dominant.  

The plots do not contain regions with zero slopes.  As a preliminary estimate, the bias 

instability for each sensor was taken at the minimum points of the graphs.  The noise 

values were obtained as shown in Figure 65 and the results are summarized in Table 13.   

10
-4

10
-3

10
-2

10
-1

10
0

10
-1

10
0

10
1

10
2

Cluster Time (hr)

A
D

E
V

 (
°/

hr
)

VACUUM - Normal Allan STD DEV, 2 samples STD DEV

 

 

X 
Y
Z



 

 98

 

Figure 65.   Sample Plot Showing Noise Components from Slope of Fitted Line 

The results in Table 13 show that the bias instability for the X and Y 

sensors are less than the Z sensors.  From previous tests, however, the Z sensor has 

demonstrated to be the most stable, while the X sensor has shown to be the one that has 

the largest drift.  This inconsistency may be an indication that long-term data is required 

to obtain better estimates of the bias instability, as well as identification of other noise 

components.   

The quality of Allan variance estimation depends on the number of 

independent clusters, and the confidence improves as the number of clusters is increased.  

It is recommended to design a test to observe a particular noise term within a given 

accuracy using the equations provided in reference [33], page 78 (Annex C.2 Estimation 

accuracy and test design, Equation C.22).   
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Table 13.   Summary of Initial Noise Analysis  

Sensor ARW, -1/2 slope, T = 1,  
(°/h1/2) 

Bias instability, 0 slope, 
(°/h) 

 {estimate only} 

Rate ramp, +1 slope, T = 

√2, (°/h/√h)  

{estimate only} 

Gyro X 0.3546 1.920 5.817 

Gyro Y 0.386  0.886 2.71 

Gyro Z 0.352  2.381 -- 
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H. SUMMARY  

The results of the tests are summarized in Table 14: 

Table 14.   Summary of Results, Comparison to Previous Research and Manufacturer Data 

Test Results Previous Research Manufacturer 
Data 

Startup 
Profile/ initial 

transients 

Startup time cannot be determined 
due to software setup. 

Bottom line: Initial transients are 
of more concern.  After thermal & 
pressure compensation, the 
transients take 1–1.5 hrs to settle.  
This transition time is consistent 
with that observed in [11]. 

See pg. 63 

 

Characteristic transition 
~ 1 sec ([2], pg. 66) 
 
Warm-up 5 minutes.  
([2] pg. 120, 128) 

Typical < 1 sec, 
(data sheet) 

Nominal 
Temperature 

Voltage 

New gain used in filter to 
increase temperature output 
range.  The new nominal 
temperature voltages are: 
 
Sensor  Vn  (V) Tave (°C) 

-X -0.5042 25.7 

Y -0.4909 25.4 

-Z -0.5071 25.3 

See pg. 37 

Due to uncertainties with 
temperature conversion equation, 
polynomial fitting did not use °C 
converted temperature. 

 

From old gain value: 

 
 
([2], pg. 28) 
 
 Note: sensor sign is the 
orientation relative to 
spacecraft (sensor 
mounted up-side down) 

-0.100 to 
+0.050 Vdc @ 
+25°C 

Ambient 
Pressure 
Chamber 

Tests 

   

Hysteresis Ramp up and down curve 
misalignment not directly 
attributed to hysteresis; partially 
due to random and/ or curve fit 
errors.  See pgs. 42- 43. 

Our method is slightly different in 

Hysteresis effects 
observed in [11] 
 
Test conducted at 10°C 
up to +40°C and back 
down to -10°C at 5°C 
steps.  All points 

N/A 
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Test Results Previous Research Manufacturer 
Data 

that no incremental steps taken. collected used for 
polynomial fitting.  

Repeatability When rate output is in raw A/D 
bits form, run-to run biases were 
observed between tests starting at 
different temperatures.  Most errors 
are reduced to negligible amounts 
after converting raw output from 
bits to volts.  However, errors of 
up to ~0.016°/sec have been 
observed to occur at random in 
both ambient and vacuum 
environments. 

Run-to-run errors cannot be 
calibrated.  See pgs. 44-46. 

[18] pg. 41;[22] pg. 112, 
describes Run-to-run 
(repeatability) bias. 

N/A 

Thermal 
Ramp 

Polynomial equations extracted for 
ground tests only.  See pg. 47. 

Equations from [2] 
needed to be updated for 
new Y sensor and to 
account for interface 
errors. 

Model 
equation: cubic 
(unique for 
each sensor) 

Vacuum 
Chamber 

Tests 

   

Mechanical 
Noise 

Noise tests show that mechanical 
noise has minimal effect on sensor 
output.  This allowed to keep 
vacuum running while data 
gathering.  Data collected in 
between heating and cooling 
cycles. 

See pgs. 51- 53. 

Mechanical noise 
concerns in [2]; 
recommended to shut off 
TVC power once desired 
temp during data 
gathering.  This is an 
issue for vacuum tests 
since the chamber 
isolation valve cannot 
not hold desired vacuum 
level for long. 

N/A (test 
equipment 
dependent) 

Vacuum 
Degree Test 

Verified that vacuum level changes 
effect on MEMS are at minimum 
during thermal ramp test.  See pgs. 
53-55. 

[11][27] showed 
pressure dependency of 
bias.  Initial result 
showed that gyros 
acquired relatively fixed 
but unique offset in 
vacuum [27]. 

 

Hysteresis Same results as ambient pressure 
tests.  See pgs. 56-57 

N/A  

Repeatability Same results as ambient pressure 
tests.  See pgs. 56-58. 

N/A  
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Test Results Previous Research Manufacturer 
Data 

Thermal 
Ramp 

Compensation polynomials 
extracted for pressure & thermal 
Bin-run.  See pg. 59 

N/A 
 

 

Rate Testing MEMS + ACS Resolution: 0.1–0.2 
°/sec (direct measurement) 

Alternative method using 
reference:  ~0.04 °/sec 

Rate equation modified to account 
for scale factor error & 
nonorthogonality. 

See pgs. 66-77 

 [2] pg. 136, Resolution: 
>0.05 °/sec (@ 5% 
requirement) 

 
 
 
 
±5 mV/(°/sec) 

Random 
Vibration 

Workmanship screening—visual 
inspection and functional test 
results showed no significant 
changes to scale factor and bias 
after vibration test. 

See pgs. 81-87 

N/A  

Other:    

ACS Interval 
Test 

Data save interval skips 
occasionally.  Software update 
required to ensure that ACS 
receives MEMS data every 2 secs. 
See pg. 91 

N/A N/A 

Variance Variance within test large 
compared to variance between 
tests.  Sampling rate not 
recommended to be lowered.   

See pg. 91 

N/A N/A 

Allan 
Variance 

ARW dominant at lower cluster 
times; bias instability and rate 
ramp require more data to get 
better estimates. 

See pgs. 96-99 

N/A Short term bias 
stability < 
0.01°/sec, 
typical (100 
sec)  
Output noise  
< 0.01°/√Hz 
(for ±100 
°/sec range) 
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From the preceding tests, the static error compensation values of Equation (2) 

were determined, as well as the nominal voltages for converting the raw temperature 

output to °C.  The three outputs of the MEMS subsystem are summarized in Table 15. 

Table 15.   MEMS Output  

Output Terms X Y Z 

 form  

Rate 

 
   where,

V
bits

4095
5   

bin-run 

(orbit-thermal 

& pressure) 

       where, 

V
bits

4095
5  

B -0.00809 0.0038 0.03219
m1 -0.05675 -0.01519 -0.01581
m2 -0.0107 -0.0037 -0.01039
m3 -0.00503 -0.00402 -0.00796

MB-dot 
= 

0.042 0.102 1.298
0.156 0.4 0.128
0.2 0.139 0.506

 

 

bcons(B-dot) 7.18 03 8.12 03 7.00 03

Temperature T(°C) 

25.7°
0.5042

0.0264
 

 

25.4°
0.4909

0.0264
 

 

25.3°
0.5071

0.0264
 

 

BIT   V  
bits

4095
5  
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V. CONCLUSIONS AND FOLLOW-ON WORK  

A. CONCLUSIONS 

The NPSAT1 MEMS 3-axis rate sensor protoflight unit was characterized and 

tested in 2007; the author of [2] reported finding literature that described vacuum effects 

on the rate output of the QRS11 sensor [11].  Thereafter, a SSAG recommendation and 

decision was made to fly the MEMS subsystem unpressurized.  This new requirement, 

along with the replacement of a damaged sensor (Y), necessitated the recalibration of the 

MEMS subsystem.  

In this thesis, the issues presented in [2] and [11] were addressed.  The pressure 

dependence of the rate bias was determined in conjunction with the thermal drift errors.  

In addition, the opportunity was taken to investigate other inertial sensor error sources 

such as hysteresis, repeatability (in relation to startup temperature), scale factor error, 

nonorthogonality, noise, and vibration sensitivity.  These errors were methodologically 

categorized according to the models in [15], [19] and [22].   

The main contributions of this thesis to the NPSAT1 program are: 

1.  Identification of deterministic error terms through laboratory testing: , which is 

the constant portion of the bias;  or the stability bias with temperature and 

pressure in the form of a third-order polynomial; and M, which is a matrix coefficient 

containing the scale factor and nonorthogonality errors of the sensors.   

 The in-run bias results for the ambient thermal ramp polynomials acquired 

additional biases of ~0.05°/sec, ~0.01°/sec, ~0.03°/sec for X, Y, and Z, 

correspondingly, when placed in vacuum.   

 The static tests in vacuum showed that the stabilization period could last 

up to 1.5 hours even with thermal and pressure compensation.  During this 

stabilization, absolute bias errors of up to ~0.02°/sec, ~0.015°/sec, and 

~0.016°/sec were recorded for the X, Y, and Z sensors, correspondingly.  

Although the initial transients are long and an important consideration for 
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spacecraft operation or pointing, these uncertainties are small enough for 

the B-dot or detumbling mode.  

2.  Gained an understanding of the repeatability errors and addressed the hysteresis 

effects mentioned in [11].  The results indicate that these effects are at a minimum.   

3.  Re-evaluated the sensors’ accuracy through dynamic tests and verified that the MEMS 

subsystem in its current setup with the ACS meets the requirement for the initial part of 

detumbling, down to about 0.1–0.2 °/sec.  The accuracy results were based on error results 

using  compensated rates.  This is the minimum compensation factor and the 

estimates are thus conservative.    

4.  Tested the robustness of the MEMS subsystem and verified that it meets the vibration 

requirements and acceptance levels.  The functional tests indicate no significant changes 

to the scale factor and bias (constant portion). 

This thesis concludes with some recommendations and follow-on research work. 

B. FOLLOW-ON TOPICS 

1. Warm-Up Drift  

It may be possible to improve the in-run compensation by using separate drift 

compensation during the warm-up period.  An idea to test this possibility requires several 

~2 hour static vacuum tests.  The tests should be started at different temperatures (e.g. at 

temperatures within the operating range).  If a relationship between the temperature and 

time or rate and time can be established, then a time dependent drift can be used during 

the warm-up period.  

2. Allan Variance Characterization 

In Section IV-G, initial modeling of the noise components was performed on 

available static data from the tests performed in vacuum.  Two-hour data was used for 

this initial analysis.  The results show that ARW is dominant for shorter cluster times.  A 

longer data set may be required to reliably identify the bias instability and rate ramp, as 

well as other noise components that could be present in the system.  The quality of Allan 
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variance estimation depends on the number of independent clusters, and the confidence 

improves as the number of clusters is increased.  As suggested earlier, it is recommended 

to design a test to observe a particular noise term within a given accuracy using the 

equations provided in reference [33], page 78 (Annex C.2 Estimation accuracy and test 

design, Equation C.22).  It is also suggested to apply the alternative methods described in 

[11] and compare the results to the traditional Allan variance results.  Prior to data 

collection, the software should be updated to include the results summarized in Table 15.   

The results of the follow-on work described here, are parameters that are required 

for designing the process noise matrix of the extended Kalman filter algorithm.  

3. Noise Filtering 

As listed in [2], Kalman filtering is still an open topic for this program.  The 

extended Kalman filter is commonly used; however, a study should be done to determine 

the most optimal type of filter to implement. 

4. Verification and Validation of Final Error Compensation Algorithm 

The accuracy results were derived from rates that were compensated using the bin-

run term.  This in-run bias compensation is the minimum for the B-dot mode.  The 

compensation terms bcons and M were derived from the rate table tests and offer additional 

improvement in the compensation; while the terms brun-run and  have yet to be 

decided on and determined.  Once the error compensation algorithm is finalized, a test 

should be conducted to verify and validate the algorithm.  This step would determine the 

accuracy of the system. 

5.  Initial Alignment 

Alignment is the procedure of determining the initial values of the attitude angles 

[19].  A study is needed to determine the method to use for this initialization. 
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a. Gyro Bias Calibration from Three-Axis Magnetometer 
Measurements 

Reference [35] presents a real-time approach for gyro bias calibration 

using three-axis magnetometer measurements without any attitude knowledge.  This 

paper is listed here for the benefit of the reader.  Additional papers that could be of 

potential interest to the reader are listed in the Bibliography section. 
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APPENDICES 

 

Appendix A  QRS11 Performance Specification  

Appendix B  Main Test List 

Appendix C  Schematics 

Appendix D  Hysteresis Test Results 

Appendix E  Scale Factor and Nonorthogonality Report X 

Appendix F  Scale Factor and Nonorthogonality Report Y 

Appendix G  Scale Factor and Nonorthogonality Report Z 

Appendix H Scale Factor and Nonorthogonality Report X, without 

reference 

Appendix I Scale Factor and Nonorthogonality Report Y, without 

reference  

Appendix J Scale Factor and Nonorthogonality Report Z, without 

reference 

Appendix K  Error of Curve Fit for MEMS Elapsed Time < 5 minutes 

Appendix L  Earth Rate Component 
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A.  QRS11 PERFORMANCE SPECIFICATION 

 

 

Appendix Figure 1.   QRS11 Performance specification 
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B.  MAIN TEST LIST 

 

All tests are provided for NPS use.  “ACS ID” is an NPS SSAG internal reference 

number.  TS = UNIX time stamp. 

 

Appendix Table 1  lists the thermal ramp tests in ambient.  The naming convention is as 

follows: 

TVAC1–1a 
 
Series name   Test#     Curve#       Curve subdivision by temperature change 
 
TVAC = Chamber Tests Ambient Pressure/Vacuum pumps off 
Recirc = Recirculator Tests 
 
 
 

Appendix Table 1.   Test List for Thermal Chamber and Recirculator Tests 

Purpose Test ID Temperature 
Range 

Notes ACS 
ID 

TS Start 

*first 300 secs 
removed 

TS End 

TVC Practice    1   

Temperature 
Test  

   15   

HAAS Practice 
Test 

   16   

TVC MEMS 
Nominal Test 

 

  
Temp did not 
stabilize;  
Moved to 
Cold Plate 

lost   

Cold Plate 
Nominal Test 
 

  
1st try 

20   
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Purpose Test ID Temperature 
Range 

Notes ACS 
ID 

TS Start 

*first 300 secs 
removed 

TS End 

Cold Plate 
Nominal Test 
 

  
Rotated 
MEMS -90 
deg, MEMS 
temp better, 
this is the data 
set used for 
nominal 
voltage 
calculations 

21   

AMBIENT 
PRESSURE 
TESTS 

 

1. Thermal 
Ramp 
up/down  
Test 

2. Hysteresis 
Effects Test 

3. Effect of 
initial 
temperature 
at startup 

 

 

TVAC1–
1a 

+64°C to -27°C Cooldown 27 1272475321 1272504689 

TVAC1–
1b 

-27°C to +27°C Warmup 27 1272474371 1272531461 

TVAC1–
2a 

-27°C to +27°C Warmup 28 1272571957 1272643199 

TVAC2–
1a 

+66°C to -29°C Cooldown, 
meet 
qualification 
range 

203 1282605684 1282617850 

TVAC2–
2a (used 
to 2–1b) 

-29°C to +66°C Test 
Hysteresis 
effect, 
warmup 

204 1282667147 1282676304 

Recirc1–
1a 

+25°C to +6°C Test 
Hysteresis 
effect, 
cooldown 

239 1282948116 1282954713 

Recirc1–
1b 

+6°C to +12°C Test 
Hysteresis 
effect, 
warmup 

239 1282954717 1282955566 

Recirc1–
2a 

+16°C to +6°C Cooldown 239 1282956386 1282959821 

Recirc1–
2b 

~+4°C to 
+25°C 

warmup 239 1282959823 1282962803 

Recirc2–
1a 

+4°C to +25°C warmup 240 1283202960 1283206656 

Recirc2–
1b 

+26°C to ~6°C cooldown 240 1283206658 1283212519 

Recirc2–
1c 

~+6.5°C to 
+27°C 

warmup 240 1283212521 1283215955 

TVAC3– -17°C to +12.8 warmup 241 1283235369 1283237609 
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Purpose Test ID Temperature 
Range 

Notes ACS 
ID 

TS Start 

*first 300 secs 
removed 

TS End 

1a °C 

TVAC3–
1b 

+18°C to -7°C cooldown 241 1283238321 1283241101 

VACUUM 
TESTS 

 

FL0–1 
(formerly 
called 
Vac1) 

+10°C to 
+14°C 

These tests 
were intended 
to test MEMS 
under 
different 
vacuum  
levels  

31 1272773185 1272776857 

FL0–2 
(formerly 
called 
Vac2) 

+22°C to 
+29°C 

32 1272933747 1272935763 

FL0–3 
(formerly 
called 
Vac3) 

+25°C to 
+31°C 

33 1272944942 1272946644 

FL0–4 
(formerly 
called 
Vac4) 

-23.5°C to -
19.5°C 

34 1272989784 1272993586 

FL0–5 
(formerly 
called 
Vac5) 

-21°C to -13°C 35 1272999276 1273000598 

FL1–1a +23°C  to 
+29°C 

No 
heat/refrigerat
ion,  

206 1282691102 1282695210 

FL1–1b +30°C  to 23°C  206 1282695214 1282707778 

FL2–1a +77°C to -21°C Under 
vacuum, 

cooldown 

242 1283281936 1283311017 

FL2–2a -11°C to -
10.77°C 

 

Under 
Vacuum, 
warmup 

243 1283357875 1283358137 

FL2–2b  Under 
vacuum, 

Cooldown—
not 
intentional, 
should have 
been a 
warmup but 
heating was 
too slow and 

243   
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Purpose Test ID Temperature 
Range 

Notes ACS 
ID 

TS Start 

*first 300 secs 
removed 

TS End 

unit cooled 
down 

FL2–2c -11°C to +19°C 

 

Under 
Vacuum, 
warmup 

243 12833581390 1283364543
0 

FL2–2d +19°C to  
+16°C 

Under 
vacuum, 

cooldown 

243 1283364545 1283365803 

FL2–3a 15°C to 2°C Under 
vacuum, 

cooldown 

243 1283366113 1283367781 

FL2–4st  Ambient 
pressure, 
Startup 
profile 

*Data too 
short <300 
secs 

243 1283367785 1283368010 

Noise Test—
Main On 

   
29 

  

Mech Pump 
Noise Test 
(Pump on) 

 

   
30 

1272690062 1272691939 
Mech Pump 
Noise Test 
(Pump off) 
 

   
30 

1272692033 1272693781 
Vacuum Degree 
Test Vac1 

Test 
 Test with 

Mech, Turbo, 
Cold trap; 
Pressure at 
6E-6 to 9.2E-
6 

31 

1272773185 1272776857 

Vac2 
Test 

 Test with just 
Mech Pump 
on, Vents 
closed 

32 

1272933567 1272935763 

Vac3 
Test 

 Test with 
Mech, Turbo, 
No Cold trap; 

33 

1272944762 1272946644 

Vac4 
Test 

 Test with 
Mech, Turbo, 

34 

1272951897 1272993586 
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Purpose Test ID Temperature 
Range 

Notes ACS 
ID 

TS Start 

*first 300 secs 
removed 

TS End 

LN2, Subzero 

Vac5 
Test 

 From 4, 
turned off 
LN2, turned 
on heat for 
17mins, 
turned off 
turbo and 
record while 
pressure 

35 

1272999276 1273000598 
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Appendix Table 2.   Rate Table Tests 

Purpose Test 
Axis 

Test 
Input 
(°/sec) 

ACS 
ID 

Rotation 
(+/-) 

 

Notes 

RATE 
TRANSFER 
TESTING 

Z 5 81 300  
4.5 82 270  

4 83 240  
3.5 84 210  

3 85 180  
2.5 86 150  

2 87 120  
1.5 88 90  

1 89 60  
0.5 90 30  

0.45 91 27  
0.4 92 24  

0.35 93 21  
0.3 94 18  

0.25 95 15  
0.2 96 12  

0.15 97 9  
0.1 98 6  

0.09 99 5.4  
0.08 100 4.8  
0.07 101 4.2  
0.06 102 3.6  
0.05 103 3  
0.04 104 2.4  
0.03 106 1.8  
0.02 105 1.2  
0.01 107 0.6  

0.009 108 2.34  
0.009  109 -2.34  
0.008 110 2.08  
0.008 111 -2.08  
0.007 112 1.82  
0.007 113 -1.82  
0.006 114 1.56  

 0.006 115 -1.56  
X 5 117 300  

4.5 118 270  
4 119 240  

3.5 120 210  
3 121 180  
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Purpose Test 
Axis 

Test 
Input 
(°/sec) 

ACS 
ID 

Rotation 
(+/-) 

 

Notes 

2.5 122 150  
2 123 120  

1.5 124 90  
1 125 60  

0.5 126 30  
0.4 128 24  
0.3 129 18  
0.2 130 12  
0.1 131 6  

0.09 133 5.4  
0.08 134 4.8  
0.07 135 4.2  
0.06 136 3.6  
0.05 137 3  
0.04 138 2.4  
0.03 139 1.8  
0.02 140 1.2  
0.01 141 0.6  

0.009 132 2.34  
0.008 142 2.08  
0.007 143 1.82  
0.006 144 1.56  

Y 5 145 300  
4.5 146 270  

4 147 240  
3.5 148 210  

3 149 180  
2.5 150 150  

2 151 120  
1.5 152 90  

1 153 60  
0.5 154 30  
0.4 155 24  
0.3 156 18  
0.2 157 12  
0.1 158 6  

0.09 159 5.4  
0.08 160 4.8  
0.07 161 4.2  
0.06 162 3.6  

0.004 163 1.04  
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Purpose Test 
Axis 

Test 
Input 
(°/sec) 

ACS 
ID 

Rotation 
(+/-) 

 

Notes 

Z 5 41 300 Initial tests conducted with 
table not tilt (level).  This 
series was not used for thesis 
analysis.  Used for 
preliminary test purposes 
only.   

4.5 42 270
4 43 240

3.5 44 210
3 45 180

2.5 46 150
2 47 120

1.5 48 90
1 49 60

0.5 50 30
0.45 51 27

0.4 52 24
0.35 53 21

0.3 54 18
0.25 55 15

0.2 58 12
0.15 59 9

0.1 60 6
0.09 61 5.4
0.08 62 4.8
0.07 63 4.2
0.06 64 3.6
0.05 65 3
0.04 66 2.4
0.03 67 1.8
0.02 69 1.2
0.01 70 0.6

0.009 71 0.54
0.008 72 0.48
0.007 73 0.42
0.006 74 0.36
0.005 75 0.3
0.004 76 0.48
0.003 77 0.36
0.002 78 0.24
0.001 79 0.12

EARTH 
RATE 

Z -- 38  36.6
-- 39  -53.4
-- 40  0
-- 80  53.4

-Y -- 164  53.6
-- 237  Tilt @ 52.6, problem with 

HAAS 
X -- 227  53.6
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Purpose Test 
Axis 

Test 
Input 
(°/sec) 

ACS 
ID 

Rotation 
(+/-) 

 

Notes 

PRE VIBE Z 5 209   
0.5 210   

0.05 211   
0.006 212   

-0.006 214   
0.004 215   

-0.004 216   
X 5 219   

0.5 220   
0.05 222   

0.006 223   
0.006 224   
0.004 225   
0.004 226   

Y 5 228   
0.5 229   

0.06 230   
0.05 231   

0.006 232   
- 0.006 234   

0.006 233  HAAS error—not used 
0.004 235   

-0.004 235   
POST VIBE 
Z 

Z 5 247   
0.5 248   

0.05 249   
X 5 253   

0.5 254   
0.05 255   

Y 5 250   
0.5 251   

0.05 252   
POST VIBE 
X 

Z 5 256   
0.5 257   

0.05 258   
X 5 259   

0.5 260
 delete first few minutes—bad 

data 

0.05 261
 delete last minutes, forgot to 

disable program 
Y 5 264   
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Purpose Test 
Axis 

Test 
Input 
(°/sec) 

ACS 
ID 

Rotation 
(+/-) 

 

Notes 

0.5 263   
0.05 262   

POST VIBE 
Y 

Z 5 271   

0.5 272   
0.05 273   

X 5 270   
0.5 269   

0.05 268   
Y 5 265  delete first part—bad data 

0.5 266   
0.05 267   

RUN TO 
RUN 

 
245

  

MAGNET 
TEST 

 
246

 NOT USED 
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C.  SCHEMATICS 

 

Appendix Figure 2.   MEMS PCFB Schematic (From [2])
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Appendix Figure 3.   Thermal Chamber Setup Schematic (From R. Phelps) 
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Appendix Figure 4.   Thermal Chamber Setup Schematic, Outside Connections, (From R. Phelps)
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D. HYSTERESIS TEST RESULTS 

 

Appendix Figure 5.   Hysteresis Test, TVAC1–1  (X) 

- 2 . 0 -1 .5 - 1 .0 -0 .5 0 .0 0 .5

-0 .0 8

-0 .0 6

-0 .0 4

-0 .0 2

0 .0 0

0 .0 2

0 .0 4

0 .0 6

0 .0 8

0 .1 0

M
E

M
S

 R
A

T
E

 X
 (

V
o

lts
)

M E M S  T E M P  X  ( V o lts )

 T V A C 1 -1 a
 T V A C 1 -1 b
 P o ly n o m i a l F it o f  T V A C 1 -1 b  M E M S  R A T E  X
 P o ly n o m i a l F it o f  T V A C 1 -1 a  M E M S  R A T E  X

- 4 0 -2 0 0 2 0 4 0 6 0

- 0 .1 2

- 0 .0 8

- 0 .0 4

0 . 0 0

0 . 0 4

0 . 0 8

0 . 1 2

0 . 1 6

0 . 2 0

M
E

M
S

 R
A

T
E

 X
 (

°/
se

c)
M E M S  T E M P  X  ( ° C )

4 0 0 8 0 0 1 2 0 0 1 6 0 0 2 0 0 0 2 4 0 0

1 9 8 0

2 0 0 0

2 0 2 0

2 0 4 0

2 0 6 0

2 0 8 0

2 1 0 0

2 1 2 0

2 1 4 0  T V A C 1 - 1 a
 T V A C 1 - 1 b
 P o ly n o m ia l  F i t  o f  T V A C 1 -1 b  M E M S  R A T E  X
 P o ly n o m ia l  F i t  o f  T V A C 1 -1 a  M E M S  R A T E  X

M E M S  T E M P  X  (B i ts )

M
E

M
S

 R
A

T
E

 X
 (

B
its

)

- 2 0 2 4 6 8 1 0 1 2 1 4 1 6 1 8 2 0 2 2

4 0 0

8 0 0

1 2 0 0

1 6 0 0

2 0 0 0

2 4 0 0
 T V A C 1 -1 a
 T V A C 1 -1 b

M E M S  E L A P S E D  T IM E  (h r s )

M
E

M
S

 T
E

M
P

 X
 (

B
its

)

- 4 0

-2 0

0

2 0

4 0

6 0

8 0

 M
E

M
S

 T
E

M
P

 X
 (

°C
)



 

 125

 

Appendix Figure 6.   Hysteresis Test, Recirc1–1 (X) 
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Appendix Figure 7.   Hysteresis Test, Recirc1–2 (X) 
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Appendix Figure 8.   Hysteresis Test, TVAC2–1 (X) 
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Appendix Figure 9.   Hysteresis Test, TVAC1–1 (X) 
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Appendix Figure 10.   Hysteresis Test, Recirc1–1 (Y) 
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Appendix Figure 11.   Hysteresis Test, Recirc1–2 (Y) 
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Appendix Figure 12.   Hysteresis Test, TVAC2–1 (Y) 
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Appendix Figure 13.   Hysteresis Test, TVAC1–1 (Z) 
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Appendix Figure 14.   Hysteresis Test, Recirc1–1 (Z) 
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Appendix Figure 15.   Hysteresis Test, Recirc1–2 (Z) 
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Appendix Figure 16.   Hysteresis Test, TVAC3–1 (Z) 
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Appendix Figure 17.   Hysteresis Test, FL2–1 (X,Y,Z) 
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Appendix Table 3.   Hysteresis Summary 

Test ID 
Raw A/D-Bit Converted 

X Y Z X Y Z 

TVAC1–1a&b unclear yes unclear no no unclear 

Recirc1–1a&b no no no no yes no 

Recirc1–2a&b no no no no yes no 

Recirc2–1a,b,&c no yes yes yes no yes 

TVAC3–1a&b no unclear unclear yes no no 

 

 

 

 

 

 

  



 

 138

E1.  SFX RESULTS 

 

 

 

Appendix Figure 18.   Sfx Results 
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E2.  MXY RESULTS 

 

 

  

Appendix Figure 19.   Mxy Results 
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E3.  MXZ RESULTS 

 

 

Appendix Figure 20.   Mxz Results 
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F1.  SFY RESULTS 

 

Appendix Figure 21.   Sfy Results 
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F2.  MYX RESULTS 

 

Appendix Figure 22.   Myx Results 
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F3.  MYZ RESULTS 

 

Appendix Figure 23.   Myz Results 
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G1.  SFZ RESULTS 

 

 

Appendix Figure 24.   Sfz Results 
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G2.  MZX RESULTS 

 

Appendix Figure 25.   Mzx Results 
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G3.  MZY RESULTS 

 

 

Appendix Figure 26.   Mzy Results 
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H1.  SFX RESULTS (NO REF) 

 

Appendix Figure 27.   Sfx Results (No Ref) 
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H2.  MXY RESULTS (NO REF) 

 

 

Appendix Figure 28.   Mxy Results (No Ref) 
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H3.  MXZ RESULTS (NO REF) 

 

Appendix Figure 29.   Mxz Results (No Ref) 
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I1.  SFY RESULTS (NO REF) 

 

Appendix Figure 30.   Sfy Results (No Ref) 
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I2. MYX RESULTS (NO REF) 

 

Appendix Figure 31.   Myx Results (No Ref) 
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I3.  MYZ RESULTS (NO REF) 

 

Appendix Figure 32.   Myz Results (No Ref) 
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J1  SFZ RESULTS (NO REF) 

 

 
 

 

Appendix Figure 33.   Sfz Results (No Ref) 
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J2.  MZX RESULTS (NO REF) 

 

 

Appendix Figure 34.   Mzx Results (No Ref) 
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J3.  MZY RESULTS (NO REF) 

 
 

Appendix Figure 35.   Mzy Results (No Ref) 
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K.  ERROR OF CURVE FIT FOR MEMS ELASED TIME < 5 MINUTES 

 

Appendix Figure 36.   Ambient Pressure Thermal Ramp data with warm up data points 
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Appendix Figure 37.   Vacuum Thermal Ramp data with warm up data points 
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